Reduction of copper sulphate with elemental iron for preparation of copper nanoparticles

  • Muhammad Nazim

Student thesis: Master's Thesis

Abstract

Reduction of copper sulphate with elemental iron also known as cementation is a well known process used for the recovery of copper for a long time. In this study, the kinetics of the reaction of copper sulphate with iron wire and iron powder has been investigated. The reaction kinetics was studied as a function of different process parameters such as initial concentration, temperature and pH. In this research work, the effects of the above three parameters were studied for both types of iron substrates. It was found that with the iron wire the reaction obeys first order kinetics with respect to copper concentration whereas with the iron powder the order was found to be 1.5. The initial concentration was found to have considerable effect on the reaction kinetics of copper sulphate with elemental iron. The rate of reaction increases with an increase in the initial copper concentration up to a certain level and then decreases for the case of iron wire. However, for the reaction of copper sulphate with iron powder, the reaction rate decreases with an increase in the initial copper concentration. The effect of temperature on the reaction rate of copper sulphate for both types iron substrates (iron wire and iron powder) has also been studied in the temperature range of 23-54ºC. In both the cases, the reaction rate increases with an increase in temperature according to Arrhenius law. The activation energy for the reactions of copper sulphate with iron wire and iron powder was found to be 25.36 kJ/mol and 26.32 kJ/mol, respectively. The copper cementation reaction was found to be suitable to operate at a pH of 2.5-3 for iron wire and a pH of 3-4 for iron powder considering possible inhibition by copper hydroxyl complex formation at higher pH and the possible excess iron consumption by hydrogen reduction at lower pH. The copper particles were produced by the reduction of copper sulphate with elemental iron. The produced copper particles were obtained in the micro to nano range. Nowadays, nano sized particles has potential applications in different engineering and industrial fields. In this research work, emphasis was given to produce copper nano-particles. The reaction of copper sulphate solution with iron wire was studied in the presence of different organic solvents to verify the size and purity of the produced copper particles. 1-butanol proved to be a competent solvent in producing nearly nano sized copper particles with particles size as small as 165 nanometers in the form of clusters and purity as high as 93.67 weight% of copper. In order to determine the copper particles with the smallest size (nano range) and copper purity to a considerable level, characterization was done with the produced copper particles. For this purpose, the effect of sonication, addition of surfactant and chelation by adding EDTA were studied. It can be concluded that nano size copper particles with size less than 100 nm with copper purity of 100% were produced by reaction of 5% copper sulphate solution in the presence of 2 ml surfactant with iron wire and sonication. These copper nano particles have potential applications as catalysts for different industrial organic reactions. Finally, optimization studies of the process parameters effect on the reaction yield of copper sulphate with both types of iron substrates (wire and powder) were carried out using MATLAB 7.0 software. In this study, the relationship between three process variables namely the initial concentration of copper, temperature and pH of solution with reaction yield of copper cementation reaction was investigated for both the cases. Cubic mixture models were developed by using three levels full factorial design to find out the main effects and interactions of these process variables on the reaction yields of copper. The validity of the cubic mixture regressed models have been verified with high regression coefficients and through normal probability curves for residuals. Finally, response surface methodology was used to determine the optimum operating conditions of the cementation reaction that can provide the maximum yield. Response surface and contour plots were proved to be effective in investigating the optimum process variables for copper yield. The optimum conditions for the reaction of copper sulphate with iron wire as determined by optimization toolbox of MATLAB 7.0 software were an initial copper concentration of 2808 ppm, temperature of 54°C and pH of 2.86 giving a maximum yield of 0.99. On the other hand, the optimum conditions for the reaction of copper sulphate with iron powder as determined by optimization toolbox of MATLAB 7.0 software were an initial copper concentration of 2248 ppm, temperature of 54°C and pH of 3.46 giving maximum yield of 0.90.
Date of AwardDec 2011
Original languageAmerican English
SupervisorAhmed Al Shoaibi (Supervisor)

Keywords

  • Applied sciences
  • Copper nanoparticles
  • Chemical engineering
  • Nanotechnology
  • 0652:Nanotechnology
  • 0542:Chemical engineering

Cite this

'