Wettability of nano-treated calcite/CO2/brine systems: Implication for enhanced CO2 storage potential

Sarmad Al-Anssari, Muhammad Arif, Shaobin Wang, Ahmed Barifcani, Maxim Lebedev, Stefan Iglauer

    Research output: Contribution to journalArticlepeer-review

    52 Scopus citations

    Abstract

    Nanofluids are proven to be efficient agents for wettability alteration in subsurface applications including enhanced oil recovery (EOR). Nanofluids can also be used for CO2-storage applications where the CO2-wet rocks can be rendered strongly water-wet, however no attention has been given to this aspect in the past. Thus in this work we presents contact angle (θ) measurements for CO2/brine/calcite system as function of pressure (0.1 MPa, 5 MPa, 10 MPa, 15 MPa, and 20 MPa), temperature (23 °C, 50 °C and 70 °C), and salinity (0, 5, 10, 15, and 20% NaCl) before and after nano-treatment to address the wettability alteration efficiency. Moreover, the effect of treatment pressure and temperature, treatment fluid concentration (SiO2 wt%) and the period of nano-treatment on the wettability of calcite is examined. We find that nano-treatment alters the wettability significantly i.e. intermediate-wet calcite turns strongly water-wet after treatment (e.g. at 20 MPa and 50 °C, θ = 64° for intermediate-wet calcite, and θ = 28° for nano-treated calcite). Consequently, pre-injection of nanofluids will significantly enhanced the storage potential. It was also found that the permanent shift in wettability after nano-treatment is a function of treatment conditions including temperature, pressure, and treatment duration time and that surfaces treated under high pressure and low temperature yield better wettability alteration efficiency. We point out that the change in wettability is attributed to the changes in surface properties of the nano-treated sample. The results of the study thus depict that nanoparticles can significantly enhance storage potential and de-risk storage projects.

    Original languageBritish English
    Pages (from-to)97-105
    Number of pages9
    JournalInternational Journal of Greenhouse Gas Control
    Volume66
    DOIs
    StatePublished - Nov 2017

    Keywords

    • Calcite
    • Carbonate
    • CO
    • Nanofluid
    • Pressure
    • Silica nanoparticles

    Fingerprint

    Dive into the research topics of 'Wettability of nano-treated calcite/CO2/brine systems: Implication for enhanced CO2 storage potential'. Together they form a unique fingerprint.

    Cite this