TY - JOUR
T1 - Wavelet-based enhancement of lung and bowel sounds using fractal dimension thresholding - Part I
T2 - Methodology
AU - Hadjileontiadis, Leontios J.
PY - 2005/6
Y1 - 2005/6
N2 - An efficient method for the enhancement of lung sounds (LS) and bowel sounds (BS), based on wavelet transform (WT), and fractal dimension (FD) analysis is presented in this paper. The proposed method combines multiresolution analysis with FD-based thresholding to compose a WT-FD filter, for enhanced separation of explosive LS (ELS) and BS (EBS) from the background noise. In particular, the WT-FD filter incorporates the WT-based multiresolution decomposition to initially decompose the recorded bioacoustic signal into approximation and detail space in the WT domain. Next, the FD of the derived WT coefficients is estimated within a sliding window and used to infer where the thresholding of the WT coefficients has to happen. This is achieved through a self-adjusted procedure that iteratively "peels" the estimated FD signal and isolates its peaks produced by the WT coefficients corresponding to ELS or EBS. In this way, two new signals are constructed containing the useful and the undesired WT coefficients, respectively. By applying WT-based multiresolution reconstruction to these two signals, a first version of the desired signal and the background noise is provided, accordingly. This procedure is repeated until a stopping criterion is met, finally resulting in efficient separation of the ELS or EBS from the background noise. The proposed WT-FD filter introduces an alternative way to the enhancement of bioacoustic signals, applicable to any separation problem involving nonstationary transient signals mixed with uncorrelated stationary background noise. The results from the application of the WT-FD filter to real bioacoustic data are presented and discussed in an accompanying paper.
AB - An efficient method for the enhancement of lung sounds (LS) and bowel sounds (BS), based on wavelet transform (WT), and fractal dimension (FD) analysis is presented in this paper. The proposed method combines multiresolution analysis with FD-based thresholding to compose a WT-FD filter, for enhanced separation of explosive LS (ELS) and BS (EBS) from the background noise. In particular, the WT-FD filter incorporates the WT-based multiresolution decomposition to initially decompose the recorded bioacoustic signal into approximation and detail space in the WT domain. Next, the FD of the derived WT coefficients is estimated within a sliding window and used to infer where the thresholding of the WT coefficients has to happen. This is achieved through a self-adjusted procedure that iteratively "peels" the estimated FD signal and isolates its peaks produced by the WT coefficients corresponding to ELS or EBS. In this way, two new signals are constructed containing the useful and the undesired WT coefficients, respectively. By applying WT-based multiresolution reconstruction to these two signals, a first version of the desired signal and the background noise is provided, accordingly. This procedure is repeated until a stopping criterion is met, finally resulting in efficient separation of the ELS or EBS from the background noise. The proposed WT-FD filter introduces an alternative way to the enhancement of bioacoustic signals, applicable to any separation problem involving nonstationary transient signals mixed with uncorrelated stationary background noise. The results from the application of the WT-FD filter to real bioacoustic data are presented and discussed in an accompanying paper.
KW - Bowel sounds
KW - Explosive character
KW - Fractal dimension thresholding
KW - Lung sounds
KW - Noise reduction
KW - Structure extraction
KW - Wavelet transform
UR - http://www.scopus.com/inward/record.url?scp=20444466136&partnerID=8YFLogxK
U2 - 10.1109/TBME.2005.846706
DO - 10.1109/TBME.2005.846706
M3 - Article
C2 - 15977745
AN - SCOPUS:20444466136
SN - 0018-9294
VL - 52
SP - 1143
EP - 1148
JO - IEEE Transactions on Biomedical Engineering
JF - IEEE Transactions on Biomedical Engineering
IS - 6
ER -