Vibration suppression in two-dimensional oscillation dynamical systems

Adnan S. Saeed, Mohammad A. AL-Shudeifat

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

During the past few decades, significant interest in applying linear and nonlinear dynamical vibration absorbers for energy transfer and dissipation has significantly arisen. The existing studies of employing dynamical absorbers with small and large-scale dynamical structures have been mostly focusing on suppressing the oscillations for structures that move in one direction only. However, most of these structures are vulnerable to different sources and types of excitations that could induce two-dimensional oscillations into these structures. Consequently, this paper presents an application of a vibration absorber to suppress the two-dimensional vibration induced into the structure caused by a two-dimensional impulsive loading. The system description and the governing equations are firstly introduced and then followed by an optimization process to maximize vibration suppression. The response of the system under various combinations of longitudinal and lateral impulsive loadings is presented and the capability of the proposed absorber to suppress the induced vibration is evaluated.

Original languageBritish English
Title of host publicationDynamics, Vibration, and Control
ISBN (Electronic)9780791852040
DOIs
StatePublished - 2018
EventASME 2018 International Mechanical Engineering Congress and Exposition, IMECE 2018 - Pittsburgh, United States
Duration: 9 Nov 201815 Nov 2018

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume4B-2018

Conference

ConferenceASME 2018 International Mechanical Engineering Congress and Exposition, IMECE 2018
Country/TerritoryUnited States
CityPittsburgh
Period9/11/1815/11/18

Fingerprint

Dive into the research topics of 'Vibration suppression in two-dimensional oscillation dynamical systems'. Together they form a unique fingerprint.

Cite this