Vein calcite in cretaceous carbonate reservoirs of Abu Dhabi: Record of origin of fluids and diagenetic conditions

S. Morad, I. S. Al-Aasm, M. Sirat, M. M. Sattar

Research output: Contribution to journalArticlepeer-review

55 Scopus citations

Abstract

Petrographic, geochemical analyses (major, trace and rare-earth elements and C, O- and Sr-isotopes), and fluid-inclusion microthermometry study of vein calcites in primarily Cretaceous reservoir carbonate rocks in oilfields from Abu Dhabi, UAE, helped to unravel the formation conditions and origin of diagenetic fluids.The vein calcites have diverse crystal shapes (equant blocky, bladed and fibrous) and sizes (up to 3cm across) and display complex cross-cutting relationships. These calcites display a wide range of stable carbon (δ13CV-PDB=δ11.1% to +9.6%) and oxygen (δ18OV-PDB=δ12.7% to δ2.3%) isotopic compositions, indicating formation under diverse geological conditions. The oxygen isotopic composition suggests that the precipitation of vein calcites occurred at temperatures of ca. 30-100°C assuming that the fluids had δ18OV-SMOW values of marine pore waters which evolved to basinal brines (i.e. δ1.2% and +2%, respectively). These inferred temperatures corroborate the fluid-inclusion microthermometry, which revealed a predominantly single, whole liquid phase that suggests entrapment temperature less than ca. 50°C. A few two-phase fluid inclusions in equant and bladed calcite indicate precipitation at ca. 68-100°C and salinity of ca. 3.9-10.1wt.% equivalent NaCl).The carbon isotopic signatures suggest derivation of dissolved carbon from the host marine carbonates and, less commonly, from the degradation of organic matter by methanogenic and sulfate-reducing bacteria. The diverse sources of carbon coupled with the inferred wide range of precipitation temperatures presumably account for the lack of correlation between the carbon and oxygen isotopes. The derivation of dissolved carbon mainly from the host rocks is in good agreement with the marine Sr isotopic ratios of these calcites (87Sr/86Sr=0.70744 to 0.70766). Rare-earth element patterns suggest significant fluid interaction with upper continental crustal rocks as evidenced by negative Eu anomalies and LREE-enriched patterns.

Original languageBritish English
Pages (from-to)156-170
Number of pages15
JournalJournal of Geochemical Exploration
Volume106
Issue number1-3
DOIs
StatePublished - Jul 2010

Keywords

  • Carbonate reservoirs
  • Cretaceous
  • Fluid flow
  • Geochemistry
  • UAE
  • Vein calcite

Fingerprint

Dive into the research topics of 'Vein calcite in cretaceous carbonate reservoirs of Abu Dhabi: Record of origin of fluids and diagenetic conditions'. Together they form a unique fingerprint.

Cite this