Variable motion/force transmissibility of a metamorphic parallel mechanism with reconfigurable 3T and 3R motion

Dongming Gan, Jian S. Dai, Jorge Dias, Lakmal D. Seneviratne

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

This paper presents a metamorphic parallel mechanism which can switch its motion between pure translation (3T) and pure rotation (3R) motion. This feature stems from a reconfigurable Hooke (rT) joint of which one of the rotation axes can be altered freely. More than that, based on the reconfiguration of the rT joint, workspace of both 3T and 3R motion can be tunable and the rotation center of the 3R motion can be controlled along a line perpendicular to the base plane. Kinematics analysis is presented based on the geometric constraint of the parallel mechanism covering both 3T and 3R motion. Following these screw theory based motion/force transmission equations are obtained and their characteristics are investigated and linked to the singularity analysis using Jacobian matrix. Motion/force transmission indices can be used to optimize basic design parameters of the metamorphic parallel mechanism. This provides reference of this mechanism for potential applications requiring 3T and 3R motion.

Original languageBritish English
Title of host publication39th Mechanisms and Robotics Conference
ISBN (Electronic)9780791857144
DOIs
StatePublished - 2015
EventASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2015 - Boston, United States
Duration: 2 Aug 20155 Aug 2015

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume5C-2015

Conference

ConferenceASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2015
Country/TerritoryUnited States
CityBoston
Period2/08/155/08/15

Fingerprint

Dive into the research topics of 'Variable motion/force transmissibility of a metamorphic parallel mechanism with reconfigurable 3T and 3R motion'. Together they form a unique fingerprint.

Cite this