Abstract
Jet fuel may be released in the environment either by in-flight fuel jettisoning (fuel dumping) or accidentally from spills and leaks, and eventually can reach subsurface formations where it can remain as long-term source of pollution. Remediation of aquifers contaminated by jet fuels is not a trivial task. This experimental study examined the effectiveness of a water-soluble, DNA–protein-based biodegradable non-living catalyst, with commercial name GreenZyme® for the remediation of water saturated porous media polluted with jet fuel (JP-5). Also for comparison purposes, the commercial surfactant sodium dodecyl sulfate (SDS) was used. Bench scale experiments were conducted in a glass column packed with glass beads. The migration of JP-5 in the glass column under various conditions, with and without the presence of GreenZyme® was monitored by a well-established photographic method. Digital photographs of the packed column were captured under fluorescent lighting. The fluorescent intensity of JP-5 dyed with Red Oil O within the column was analyzed using the Matlab Image Processing Toolbox. The colour intensities were converted to concentrations via appropriate calibration curves. The experimental results suggested that GreenZyme® was an efficient biosurfactant capable of enhancing significantly the migration of JP-5 in the glass column, which performed considerably better that SDS under the experimental conditions of this study.
Original language | British English |
---|---|
Pages (from-to) | 277-286 |
Number of pages | 10 |
Journal | Environmental Technology (United Kingdom) |
Volume | 41 |
Issue number | 3 |
DOIs | |
State | Published - 28 Jan 2020 |
Keywords
- enzymes
- Jet fuel
- mobilization
- porous media
- remediation