TY - JOUR
T1 - Unusually low dust activity in North Africa in June 2023
T2 - Causes, impacts and future projections
AU - Francis, Diana
AU - Fonseca, Ricardo
AU - Nelli, Narendra
AU - Yarragunta, Yesobu
N1 - Publisher Copyright:
© 2024
PY - 2024/10/15
Y1 - 2024/10/15
N2 - Dust activity during the pre-monsoon season in Africa has an impact on the monsoon circulation and the Atlantic hurricane season. During early June 2023 the atmosphere was relatively clear over West Africa and the eastern tropical Atlantic, in contrast with the dustier June 2020. The negative phase of the North Atlantic Oscillation suppressed dust lifting, with an equatorward shifted African Easterly Jet limiting its downstream advection. On the other hand, dust accumulated in the atmosphere over northeastern Africa, with the negative dust aerosol optical depth (DAOD) anomalies over western Africa and the positive anomalies over eastern Africa more than two standard deviations away from the climatological mean. The lack of dust led to an up to 55 W m−2 increase in the surface downward shortwave radiation flux and a 35 W m−2 decrease in the longwave flux, and is in line with the record-breaking sea surface temperatures over the eastern tropical Atlantic and the active start to the Atlantic hurricane season. In order to explore future projections of DAOD, a multi-model ensemble (MME) is constructed from 29 models that integrate the sixth phase of the Coupled Model Intercomparison Project (CMIP6). It captures the positive trend in the June DAOD over the eastern tropical Atlantic during 1980–2014, although the amplitude is roughly a factor of six smaller than the 0.0017 year−1 in the reanalysis dataset. The CMIP6 MME projects a further increase in DAOD in the region at a rate of up to 0.0003 year−1 in the most extreme climate change scenario for 2066–2100, which is comparable to that seen during the historical period, even though the mean values are projected to decrease by 0.03–0.06. While lower dust loadings may lead to improved air quality, they will likely further fuel pre-season and early season storms in the North Atlantic, which have become more frequent in recent decades.
AB - Dust activity during the pre-monsoon season in Africa has an impact on the monsoon circulation and the Atlantic hurricane season. During early June 2023 the atmosphere was relatively clear over West Africa and the eastern tropical Atlantic, in contrast with the dustier June 2020. The negative phase of the North Atlantic Oscillation suppressed dust lifting, with an equatorward shifted African Easterly Jet limiting its downstream advection. On the other hand, dust accumulated in the atmosphere over northeastern Africa, with the negative dust aerosol optical depth (DAOD) anomalies over western Africa and the positive anomalies over eastern Africa more than two standard deviations away from the climatological mean. The lack of dust led to an up to 55 W m−2 increase in the surface downward shortwave radiation flux and a 35 W m−2 decrease in the longwave flux, and is in line with the record-breaking sea surface temperatures over the eastern tropical Atlantic and the active start to the Atlantic hurricane season. In order to explore future projections of DAOD, a multi-model ensemble (MME) is constructed from 29 models that integrate the sixth phase of the Coupled Model Intercomparison Project (CMIP6). It captures the positive trend in the June DAOD over the eastern tropical Atlantic during 1980–2014, although the amplitude is roughly a factor of six smaller than the 0.0017 year−1 in the reanalysis dataset. The CMIP6 MME projects a further increase in DAOD in the region at a rate of up to 0.0003 year−1 in the most extreme climate change scenario for 2066–2100, which is comparable to that seen during the historical period, even though the mean values are projected to decrease by 0.03–0.06. While lower dust loadings may lead to improved air quality, they will likely further fuel pre-season and early season storms in the North Atlantic, which have become more frequent in recent decades.
KW - African Easterly Jet
KW - Circumglobal Wavetrain
KW - CMIP6
KW - Dust aerosol optical depth
KW - North Atlantic Oscillation
KW - Radiation fluxes
UR - http://www.scopus.com/inward/record.url?scp=85198853105&partnerID=8YFLogxK
U2 - 10.1016/j.atmosres.2024.107594
DO - 10.1016/j.atmosres.2024.107594
M3 - Article
AN - SCOPUS:85198853105
SN - 0169-8095
VL - 309
JO - Atmospheric Research
JF - Atmospheric Research
M1 - 107594
ER -