Unravelling CO2 capture performance of microalgae cultivation and other technologies via comparative carbon balance analysis

Yoke Wang Cheng, Jeremy Sheng Ming Lim, Chi Cheng Chong, Man Kee Lam, Jun Wei Lim, Inn Shi Tan, Henry Chee Yew Foo, Pau Loke Show, Steven Lim

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Microalgae cultivation, absorption, adsorption, and membrane separation are widely applauded as promising technologies to sequester CO2 from flue gas. Herein, comparative carbon balance was used to elucidate their CO2 capture performance in the aspects of CO2 emission rates (direct, indirect, total, and net), CO2 removal efficiencies (apparent and actual), and CO2 removal rate per power input ratio. Screening criteria for effective CO2 capture system rule out energy-intensive sorption processes, put forward low energy membrane separation, and disclose alterable competency of microalgae cultivation. For CO2 capture from flue gas, microalgae (Chlorella vulgaris) cultivation in open raceway ponds was only inferior to membrane separation. To improve microalgal CO2 capture, the sensitivity analysis was performed by replacing original microalgae species (C. vulgaris) or cultivation system (open raceway pond). The microalgal CO2 capture in open raceway ponds became worse following the substitution of C. vulgaris with alternatives (Botryococcus braunii, Chlorella kessleri, Chlorella pyrenoidosa, Scenedesmus obliquus, Spirulina sp., or Tetraselmis suecica). For microalgal (C. vulgaris) CO2 capture, the competent cultivation systems included open raceway pond and airlift photobioreactor, while the bubble column, flat panel, or tubular photobioreactors were classified as non-competent systems. In short, microalgal (C. vulgaris) CO2 capture was technically feasible in open raceway pond or airlift photobioreactor; further, the use of airlift photobioreactor was preferred for better CO2 capture and microalgae biomass production. Due to the necessity of a huge working volume, the low scalability of microalgae cultivation could hamper the industrial application of microalgal CO2 capture from flue gas.

Original languageBritish English
Article number106519
JournalJournal of Environmental Chemical Engineering
Volume9
Issue number6
DOIs
StatePublished - Dec 2021

Keywords

  • Carbon capture
  • Membrane separation
  • Microalgae cultivation
  • Sorption

Fingerprint

Dive into the research topics of 'Unravelling CO2 capture performance of microalgae cultivation and other technologies via comparative carbon balance analysis'. Together they form a unique fingerprint.

Cite this