Unified kinematics analysis and analytic singularity-free workspace of a metamorphic parallel mechanism with controllable rotation center

Dongming Gan, Jian S. Dai, Jorge Dias, Lakmal D. Seneviratne

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper presents a metamorphic parallel mechanism with controllable rotation center in its pure rotation topology. Based on reconfiguration of a reconfigurable Hooke (rT) joint, the rotational center of the mechanism can be altered along the central line perpendicular to the base plane. A unified Dixon resultant based method is proposed to solve the forward kinematics analytically by covering all configurations with variable rotation centers while the rotation motion is expressed using Cayley formula. Then singularity loci are derived and represented in a new coordinate system with the three Rodrigues-Hamilton parameters assigned in three perpendicular directions. Limb-actuation singularity loci are also obtained from row vectors of the Jacobian matrix. By using Cayley formula, analytical workspace boundaries are expressed by including the mechanism structure parameters and input actuation limits. Finally, singularity-free workspace of configurations with variable rotation centers is demonstrated in the proposed coordinate system.

Original languageBritish English
Title of host publication38th Mechanisms and Robotics Conference
ISBN (Electronic)9780791846377
DOIs
StatePublished - 2014
EventASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014 - Buffalo, United States
Duration: 17 Aug 201420 Aug 2014

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume5B

Conference

ConferenceASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014
Country/TerritoryUnited States
CityBuffalo
Period17/08/1420/08/14

Fingerprint

Dive into the research topics of 'Unified kinematics analysis and analytic singularity-free workspace of a metamorphic parallel mechanism with controllable rotation center'. Together they form a unique fingerprint.

Cite this