Abstract
In this study, we have demonstrated a particle separation device taking advantage of the ultra-high frequency sound waves. The sound waves, in the form of surface acoustic waves, are produced by an acoustofluidic platform build on top of a piezoelectric substrate bonded to a microfluidic channel. The particles' mixture, pumped through the microchannel, is focused using a sheath fluid. A travelling surface acoustic wave (TSAW), propagating normal to the flow, interacts with the particles and deflect them from their original path to induce size-based separation in a continuous flow. We initially started the experiment with 40 MHz TSAWs for deflecting 10 μm diameter polystyrene particles but failed. However, larger diameter particles (∼ 30 μm) were successfully deflected from their streamlines and separated from the smaller particles (∼ 10 μm) using TSAWs with 40 MHz frequency. The separation of smaller diameter particles (3, 5 and 7 μm) was also achieved using an order of magnitude higher-frequency (∼ 133 MHz) TSAWs.
Original language | British English |
---|---|
DOIs | |
State | Published - 2015 |
Event | ASME/JSME/KSME 2015 Joint Fluids Engineering Conference, AJKFluids 2015 - Seoul, Korea, Republic of Duration: 26 Jul 2015 → 31 Jul 2015 |
Conference
Conference | ASME/JSME/KSME 2015 Joint Fluids Engineering Conference, AJKFluids 2015 |
---|---|
Country/Territory | Korea, Republic of |
City | Seoul |
Period | 26/07/15 → 31/07/15 |