Abstract
The 5-HT4 receptor (5-HT4R) belongs to the G-protein-coupled receptor (GPCR) family and is of considerable interest for the development of new drugs to treat gastrointestinal diseases and memory disorders. The 5-HT4R exists as a constitutive dimer but its molecular determinants are still unknown. Using co-immunoprecipitation and Bioluminescence Resonance Energy Transfer (BRET) techniques, we show here that 5-HT4R homodimerization but not 5-HT4R-β2 adrenergic receptor (β2AR) heterodimerization is largely decreased under reducing conditions suggesting the participation of disulfide bonds in 5-HT4R dimerization. Molecular modeling and protein docking experiments identified four cysteine (Cys) residues potentially involved in the dimer interface through intramolecular or intermolecular disulfide bonds. We show that disulfide bridges between Cys112 and Cys145 located within TM3 and TM4, respectively, are of critical importance for 5-HT4R dimer formation. Our data suggest that two disulfide bridges between two transmembrane Cys residues are involved in the dimerization interface of a GPCR.
Original language | British English |
---|---|
Pages (from-to) | 642-647 |
Number of pages | 6 |
Journal | Biochemical and Biophysical Research Communications |
Volume | 356 |
Issue number | 3 |
DOIs | |
State | Published - 11 May 2007 |
Keywords
- BRET
- Dimer
- Disulfide bridge
- G-protein-coupled receptor
- Molecular modeling
- Serotonin