Abstract
This study explores the effects of Si and Si-P heteroatoms doping and co-doping on a monolayer graphene surface through density functional analysis. The results suggest that doping with Si and co-doping with Si-P significantly alters the bonding arrangement of the atoms surrounding the graphene sheet. Additionally, the surface of the graphene material had a high concentration of electrons in both Si doping and Si-P co-doping, based on electron population analysis. The HOMO–LUMO gap of graphene sheets was found to decrease in the following order: pristine graphene sheet > Si-doped graphene sheet > Si-P co-doped graphene sheet. Furthermore, a TD-DFT study revealed that the absorption wavelength of Si and Si-P co-doped graphene systems had a greater shift to a lower range compared to pristine graphene. The order of decreasing absorption wavelength is Si-P co-doped graphene, Si doped graphene, and pristine graphene. These materials are suggested to have a high potential for photodetector applications due to their broad absorption range.
Original language | British English |
---|---|
Article number | 838 |
Journal | Photonics |
Volume | 10 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2023 |
Keywords
- DFT
- graphene
- heteroatom doping
- molecular modeling
- photodetector