Abstract
This paper is devoted to transient analysis of lossy transmission lines characterized by frequency-dependent parameters. A public dataset of parameters for three line examples (a module, a board, and a cable) is used, and a new example of on-chip interconnect is introduced. This dataset provides a well established and realistic benchmark for accuracy and timing analysis of interconnect analysis tools. Particular attention is devoted to the intrinsic consistency and causality of these parameters. Several implementations based on generalizations of the well-known method-of-characteristics are presented. The key feature of such techniques is the extraction of the modal delays. Therefore, the method is highly optimized for long interconnects characterized by significant propagation delay. Nonetheless, the method is also successfully applied here to a short high/loss on-chip line, for which other approaches based on lumped matrix rational approximations can also be used with high efficiency. This paper shows that the efficiency of delay extraction techniques is strongly dependent on the particular circuit implementation and several practical issues including generation of rational approximations and time step control are discussed in detail.
Original language | British English |
---|---|
Pages (from-to) | 45-56 |
Number of pages | 12 |
Journal | IEEE Transactions on Advanced Packaging |
Volume | 27 |
Issue number | 1 |
DOIs | |
State | Published - Feb 2004 |
Keywords
- Causality
- Hilbert transform
- Lossy transmission lines
- Method of characteristics
- Transient analysis