Trajectory recovery and 3D mapping from rotation-compensated imagery for an airship

Luiz G.B. Mirisola, Jorge Dias, A. Traça De Almeida

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

14 Scopus citations

Abstract

On this paper, inertial orientation measurements are exploited to compensate the rotational degrees of freedom for an aerial vehicle carrying a perspective camera, taking a sequence of images of the ground plane. It is known that, on the pure translation case, full homographies are reduced to planar homologies, and the relative scene depth of two points equals the reciprocal ratio of their image distances to the the FOE. The first part of this paper covers trajectory recovery for an airship carrying a perspective camera taking a sequence of images of the ground plane, as a series of relative poses between successive camera poses. This is commonly named "Visual Odometry". Previous results showed that the ratio of heights over the ground plane on two views can be calculated more accurately, and thus the altitude component of the trajectory, and here these results are extended by recovering the full 3D camera trajectory. In the second part, the same rotation-compensated imagery is exploited on the mapping domain: from pixel correspondences between successive images the height of points over the ground plane can be recovered, and placed on a DEM grid, performing 3D mapping from monocular aerial images. These results may be useful on the SLAM context.

Original languageBritish English
Title of host publicationProceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007
Pages1908-1913
Number of pages6
DOIs
StatePublished - 2007
Event2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007 - San Diego, CA, United States
Duration: 29 Oct 20072 Nov 2007

Publication series

NameIEEE International Conference on Intelligent Robots and Systems

Conference

Conference2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007
Country/TerritoryUnited States
CitySan Diego, CA
Period29/10/072/11/07

Fingerprint

Dive into the research topics of 'Trajectory recovery and 3D mapping from rotation-compensated imagery for an airship'. Together they form a unique fingerprint.

Cite this