TY - JOUR
T1 - Three-dimensional free-standing heterostructures out of MoS2 and rGO with infused PDMS towards electromechanical pressure sensing
AU - Solayman, Abdullah
AU - Li, Baosong
AU - Abu Al-Rub, Rashid
AU - Liao, Kin
N1 - Publisher Copyright:
© 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
PY - 2024/10/1
Y1 - 2024/10/1
N2 - The behavior of two-dimensional (2D) materials constructed as three-dimensional structures is studied to bring such materials one step closer to the real-life application. Lattices structures of gyroid triply periodic minimal surface (TPMS) were fabricated out of 2D materials, namely, molybdenum disulfide (MoS2), and reduced graphene oxide (rGO), forming for the first time free-standing MoS2 (FSM) lattice and free-standing hetero-structural lattice of MoS2 and rGO (FSH) out of TPMS. These 2D materials were also integrated with polydimethylsiloxane (PDMS) elastomer, forming FSM/PDMS and FSH/PDMS composites. Mechanical characterization, including compression and cyclic tests, were conducted on FSM, FSH, and the composites. Additionally, electromechanical characterization was conducted to evaluate the sensing potential of these structures. It is worth noting that the elastic modulus of the 10 unit-cells with either FSM or FSH was higher than the other lattices of the same type. FSH tends to have a higher modulus at 1504.4 kPa in the 10 unit-cells. This modulus is even higher at 3 MPa when PDMS is added to the FSH lattice. Due to the brittle fracture, FSM or FSH lattices follow the layer-by-layer failure mechanism. Samples with PDMS are more stable towards such cyclic tests without noticeable failures or a decrease in elastic modulus. Finally, the 10 unit-cell lattices of FSH/PDMS composite have the highest conductivity at 2.5 mA, and a comparable sensitivity at 0.365 kPa−1 over the range of 0-100 kPa.
AB - The behavior of two-dimensional (2D) materials constructed as three-dimensional structures is studied to bring such materials one step closer to the real-life application. Lattices structures of gyroid triply periodic minimal surface (TPMS) were fabricated out of 2D materials, namely, molybdenum disulfide (MoS2), and reduced graphene oxide (rGO), forming for the first time free-standing MoS2 (FSM) lattice and free-standing hetero-structural lattice of MoS2 and rGO (FSH) out of TPMS. These 2D materials were also integrated with polydimethylsiloxane (PDMS) elastomer, forming FSM/PDMS and FSH/PDMS composites. Mechanical characterization, including compression and cyclic tests, were conducted on FSM, FSH, and the composites. Additionally, electromechanical characterization was conducted to evaluate the sensing potential of these structures. It is worth noting that the elastic modulus of the 10 unit-cells with either FSM or FSH was higher than the other lattices of the same type. FSH tends to have a higher modulus at 1504.4 kPa in the 10 unit-cells. This modulus is even higher at 3 MPa when PDMS is added to the FSH lattice. Due to the brittle fracture, FSM or FSH lattices follow the layer-by-layer failure mechanism. Samples with PDMS are more stable towards such cyclic tests without noticeable failures or a decrease in elastic modulus. Finally, the 10 unit-cell lattices of FSH/PDMS composite have the highest conductivity at 2.5 mA, and a comparable sensitivity at 0.365 kPa−1 over the range of 0-100 kPa.
KW - 3D MoS lattices
KW - 3D printing
KW - gyroid
KW - heterostructures 3D lattices
KW - triply periodic minimal surfaces
UR - https://www.scopus.com/pages/publications/85204986676
U2 - 10.1088/1361-665X/ad78cd
DO - 10.1088/1361-665X/ad78cd
M3 - Article
AN - SCOPUS:85204986676
SN - 0964-1726
VL - 33
JO - Smart Materials and Structures
JF - Smart Materials and Structures
IS - 10
M1 - 105028
ER -