TY - JOUR
T1 - Three-dimensional (3D) MnMoO4@g-C3N4/CNT hybrid composite electrode for hybrid capacitive deionization
AU - Rangaraj, Vengatesan M.
AU - Yoo, Jae In
AU - Song, Jang Kun
AU - Mittal, Vikas
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/7/15
Y1 - 2023/7/15
N2 - In this work, a hierarchical three-dimensional MnMoO4@g-C3N4/CNT hybrid ternary composite was developed through the facile hydrothermal method. MnMoO4@g-C3N4/CNT and g-C3N4/CNT electrodes were used as cathode and anode to fabricate the hybrid capacitive deionization (HCDI) system. Manganese molybdate (MnMoO4) rods are uniformly intertwined on the three-dimensional (3D) conductive network structure of graphitic carbon nitride/carbon nanotube (g-C3N4/CNT) heterojunction in the ternary composite. As-obtained electrode materials of MnMoO4@g-C3N4/CNT and g-C3N4/CNT show the specific capacitance of 252.4 and 89.2 Fg−1, respectively, at 1 Ag−1 in 1 M NaCl solution. Mn element in the MnMoO4@g-C3N4/CNT hybrid induces a reversible redox reaction that selectively intercalates/de-intercalates the Na+-ion in the salt solution, yielding a high salt adsorption capacity of 43.6 mg. g−1 at 1.2 V and 1000 ppm NaCl solution medium. In addition, MnMoO4@g-C3N4/CNT //g-C3N4/CNT-based HCDI cell was recycled for 10 cycles. The system reaches the highest SAC of 42.6 mg. g−1 after 10 consecutive charge–discharge cycles with a retention of 91%, indicating the excellent cycling stability of the MnMoO4@g-C3N4/CNT electrode. These results signify that the MnMoO4@g-C3N4/CNT is a promising electrode material, possessing a pseudocapacitive behavior and remarkable desalination ability, which can be a potential new candidate for the HCDI system.
AB - In this work, a hierarchical three-dimensional MnMoO4@g-C3N4/CNT hybrid ternary composite was developed through the facile hydrothermal method. MnMoO4@g-C3N4/CNT and g-C3N4/CNT electrodes were used as cathode and anode to fabricate the hybrid capacitive deionization (HCDI) system. Manganese molybdate (MnMoO4) rods are uniformly intertwined on the three-dimensional (3D) conductive network structure of graphitic carbon nitride/carbon nanotube (g-C3N4/CNT) heterojunction in the ternary composite. As-obtained electrode materials of MnMoO4@g-C3N4/CNT and g-C3N4/CNT show the specific capacitance of 252.4 and 89.2 Fg−1, respectively, at 1 Ag−1 in 1 M NaCl solution. Mn element in the MnMoO4@g-C3N4/CNT hybrid induces a reversible redox reaction that selectively intercalates/de-intercalates the Na+-ion in the salt solution, yielding a high salt adsorption capacity of 43.6 mg. g−1 at 1.2 V and 1000 ppm NaCl solution medium. In addition, MnMoO4@g-C3N4/CNT //g-C3N4/CNT-based HCDI cell was recycled for 10 cycles. The system reaches the highest SAC of 42.6 mg. g−1 after 10 consecutive charge–discharge cycles with a retention of 91%, indicating the excellent cycling stability of the MnMoO4@g-C3N4/CNT electrode. These results signify that the MnMoO4@g-C3N4/CNT is a promising electrode material, possessing a pseudocapacitive behavior and remarkable desalination ability, which can be a potential new candidate for the HCDI system.
KW - g-CN/CNT
KW - Hybrid capacitive deionization
KW - MnMoO
KW - Pseudocapacitance
KW - Salt adsorption capacity
UR - http://www.scopus.com/inward/record.url?scp=85153280960&partnerID=8YFLogxK
U2 - 10.1016/j.seppur.2023.123898
DO - 10.1016/j.seppur.2023.123898
M3 - Article
AN - SCOPUS:85153280960
SN - 1383-5866
VL - 317
JO - Separation and Purification Technology
JF - Separation and Purification Technology
M1 - 123898
ER -