Thermal modelling and control of 130kw direct contact (salt/air) heat exchanger

Omer A. Qureshi, Nicolas Calvet, Peter Armstrong

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This work investigates the transient response of a certain type of direct contact heat exchanger (DCHX) that consists of packing (Raschig Rings) to increase the surface area for effective heat transfer between molten salt and air. Molten salt from the hot tank enters the heat exchanger (HX) and exit after heating the air still in the molten form. Thermal capacitance of the HX, mainly due to packing and resident salt inside the HX, results in strong transient response. Pure delay from salt residence time may also impact transient response. Both phenomena have been modelled in this paper. A Proportional-Integral controller (PI control) performance has been evaluated to maintain the minimum salt temperature above avoid crystallization temperature of the salt.

Original languageBritish English
Title of host publicationSolarPACES 2016
Subtitle of host publicationInternational Conference on Concentrating Solar Power and Chemical Energy Systems
ISBN (Electronic)9780735415225
DOIs
StatePublished - 27 Jun 2017
Event22nd International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2016 - Abu Dhabi, United Arab Emirates
Duration: 11 Oct 201614 Oct 2016

Publication series

NameAIP Conference Proceedings
Volume1850
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference22nd International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2016
Country/TerritoryUnited Arab Emirates
CityAbu Dhabi
Period11/10/1614/10/16

Fingerprint

Dive into the research topics of 'Thermal modelling and control of 130kw direct contact (salt/air) heat exchanger'. Together they form a unique fingerprint.

Cite this