TY - JOUR
T1 - The effect of noble metal (M: Ir, Pt, Pd) on M/Ce2 O3-γ-Al2 O3 catalysts for hydrogen production via the steam reforming of glycerol
AU - Charisiou, Nikolaos D.
AU - Siakavelas, Georgios I.
AU - Papageridis, Kyriakos N.
AU - Motta, Davide
AU - Dimitratos, Nikolaos
AU - Sebastian, Victor
AU - Polychronopoulou, Kyriaki
AU - Goula, Maria A.
N1 - Funding Information:
N.D.C., G.I.S. and M.A.G. are grateful to the Research Committee of the University of Western Macedonia for financial support through grant no. 70304. K.N.P. acknowledges the financial support from the Abu Dhabi Department of Education and Knowledge (ADEK) under the AARE 2019-233 grant and support by the Khalifa University of Science and Technology under Award No. RC2-2018-024.
Funding Information:
Funding: N.D.C., G.I.S. and M.A.G. are grateful to the Research Committee of the University of Western Macedonia for financial support through grant no. 70304. K.N.P. acknowledges the financial support from the Abu Dhabi Department of Education and Knowledge (ADEK) under the AARE 2019-233 grant and support by the Khalifa University of Science and Technology under Award No. RC2-2018-024.
Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/7
Y1 - 2020/7
N2 - A promising route for the energetic valorisation of the main by-product of the biodiesel industry is the steam reforming of glycerol, as it can theoretically produce seven moles of H2 for every mole of C3 H8 O3. In the work presented herein, CeO2 –Al2 O3 was used as supporting material for Ir, Pd and Pt catalysts, which were prepared using the incipient wetness impregnation technique and characterized by employing N2 adsorption–desorption, X-Ray Diffraction (XRD), Temperature Programmed Reduction (TPR), Temperature Programmed Desorption (TPD), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM). The catalytic experiments aimed at identifying the effect of temperature on the total conversion of glycerol, on the conversion of glycerol to gaseous products, the selectivity towards the gaseous products (H2, CO2, CO, CH4) and the determination of the H2 /CO and CO/CO2 molar ratios. The main liquid effluents produced during the reaction were quantified. The results revealed that the Pt/CeAl catalyst was more selective towards H2, which can be related to its increased number of Brønsted acid sites, which improved the hydrogenolysis and dehydrogenation–dehydration of condensable intermediates. The time-on-stream experiments, undertaken at low Water Glycerol Feed Ratios (WGFR), showed gradual deactivation for all catalysts. This is likely due to the dehydration reaction, which leads to the formation of unsaturated hydrocarbon species and eventually to carbon deposition. The weak metal–support interaction shown for the Ir/CeAl catalyst also led to pronounced sintering of the metallic particles.
AB - A promising route for the energetic valorisation of the main by-product of the biodiesel industry is the steam reforming of glycerol, as it can theoretically produce seven moles of H2 for every mole of C3 H8 O3. In the work presented herein, CeO2 –Al2 O3 was used as supporting material for Ir, Pd and Pt catalysts, which were prepared using the incipient wetness impregnation technique and characterized by employing N2 adsorption–desorption, X-Ray Diffraction (XRD), Temperature Programmed Reduction (TPR), Temperature Programmed Desorption (TPD), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM). The catalytic experiments aimed at identifying the effect of temperature on the total conversion of glycerol, on the conversion of glycerol to gaseous products, the selectivity towards the gaseous products (H2, CO2, CO, CH4) and the determination of the H2 /CO and CO/CO2 molar ratios. The main liquid effluents produced during the reaction were quantified. The results revealed that the Pt/CeAl catalyst was more selective towards H2, which can be related to its increased number of Brønsted acid sites, which improved the hydrogenolysis and dehydrogenation–dehydration of condensable intermediates. The time-on-stream experiments, undertaken at low Water Glycerol Feed Ratios (WGFR), showed gradual deactivation for all catalysts. This is likely due to the dehydration reaction, which leads to the formation of unsaturated hydrocarbon species and eventually to carbon deposition. The weak metal–support interaction shown for the Ir/CeAl catalyst also led to pronounced sintering of the metallic particles.
KW - Ceria-alumina support
KW - Glycerol steam reforming
KW - Ir catalysts
KW - Pd catalysts
KW - Pt catalysts
UR - http://www.scopus.com/inward/record.url?scp=85089121297&partnerID=8YFLogxK
U2 - 10.3390/catal10070790
DO - 10.3390/catal10070790
M3 - Article
AN - SCOPUS:85089121297
SN - 2073-4344
VL - 10
JO - Catalysts
JF - Catalysts
IS - 7
M1 - 790
ER -