The convergence of traditional and digital biomarkers through AI-assisted biosensing: A new era in translational diagnostics?

    Research output: Contribution to journalReview articlepeer-review

    20 Scopus citations

    Abstract

    Advances in consumer electronics, alongside the fields of microfluidics and nanotechnology have brought to the fore low-cost wearable/portable smart devices. Although numerous smart devices that track digital biomarkers have been successfully translated from bench-to-bedside, only a few follow the same fate when it comes to track traditional biomarkers. Current practices still involve laboratory-based tests, followed by blood collection, conducted in a clinical setting as they require trained personnel and specialized equipment. In fact, real-time, passive/active and robust sensing of physiological and behavioural data from patients that can feed artificial intelligence (AI)-based models can significantly improve decision-making, diagnosis and treatment at the point-of-procedure, by circumventing conventional methods of sampling, and in person investigation by expert pathologists, who are scarce in developing countries. This review brings together conventional and digital biomarker sensing through portable and autonomous miniaturized devices. We first summarise the technological advances in each field vs the current clinical practices and we conclude by merging the two worlds of traditional and digital biomarkers through AI/ML technologies to improve patient diagnosis and treatment. The fundamental role, limitations and prospects of AI in realizing this potential and enhancing the existing technologies to facilitate the development and clinical translation of “point-of-care” (POC) diagnostics is finally showcased.

    Original languageBritish English
    Article number115387
    JournalBiosensors and Bioelectronics
    Volume235
    DOIs
    StatePublished - 1 Sep 2023

    Keywords

    • Artificial intelligence
    • Bioelectronics
    • Biosensors
    • Clinical trials
    • Digital biomarkers
    • Traditional biomarkers

    Fingerprint

    Dive into the research topics of 'The convergence of traditional and digital biomarkers through AI-assisted biosensing: A new era in translational diagnostics?'. Together they form a unique fingerprint.

    Cite this