Synthesis of Mesoporous/Macroporous Microparticles Using Three-Dimensional Assembly of Chitosan-Functionalized Halloysite Nanotubes and Their Performance in the Adsorptive Removal of Oil Droplets from Water

Asma Eskhan, Fawzi Banat, Mohammad Abu Haija, Sameer Al-Asheh

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

Halloysite nanotubes (HNTs) were assembled into mesoporous/macroporous microparticles (c-g-HNTs MPs) using Pickering template-assisted approach. To unravel the stabilization mechanism in Pickering emulsion form, several emulsions and microparticles were prepared at various conditions and visualized using confocal laser scanning microscopy. The prepared c-g-HNTs MPs were used to treat emulsified oil solutions resulting in a maximum removal efficiency of 94.47%. The kinetics data of oil adsorption onto c-g-HNTs MPs was best fitted by the pseudo-second-order kinetic model (R 2 = 0.9983). The maximum monolayer adsorption capacity of oil onto c-g-HNTs MPs as predicted by the multilayer Brunauer-Emmett-Teller model was found to be 788 mg/g. Compared with pristine HNTs, c-g-HNTs MPs exhibited higher self-settleability rates in aqueous solutions as well as in emulsified oil solutions, demonstrating their candidacy for practical water treatment applications. The c-g-HNTs MPs were repeatedly used for five adsorption-desorption cycles with minimal losses noticed in their performance.

Original languageBritish English
Pages (from-to)2343-2357
Number of pages15
JournalLangmuir
Volume35
Issue number6
DOIs
StatePublished - 12 Feb 2019

Fingerprint

Dive into the research topics of 'Synthesis of Mesoporous/Macroporous Microparticles Using Three-Dimensional Assembly of Chitosan-Functionalized Halloysite Nanotubes and Their Performance in the Adsorptive Removal of Oil Droplets from Water'. Together they form a unique fingerprint.

Cite this