TY - JOUR
T1 - Synthesis, Characterization, Biological Evaluation, and In Silico Studies of Imidazolium-, Pyridinium-, and Ammonium-Based Ionic Liquids Containing n-Butyl Side Chains
AU - Hassan, Rabia
AU - Nazir, Farzana
AU - Roosh, Mah
AU - Qaisar, Arshemah
AU - Habib, Uzma
AU - Sajini, Abdulrahim A.
AU - Iqbal, Mudassir
N1 - Funding Information:
The authors would like to acknowledge that this research was partly supported by the School of Natural Sciences (SNS), the National University of Sciences and Technology (NUST), Islamabad, Pakistan, and by the Khalifa University of Science and Technology Competitive Internal Research Award CIRA-ADEK, and the Abu Dhabi Award for Research Excellence (AARE) 2019.
Publisher Copyright:
© 2022 by the authors.
PY - 2022/10
Y1 - 2022/10
N2 - Ionic liquids (ILs) have emerged as active pharmaceutical ingredients because of their excellent antibacterial and biological activities. Herein, we used the green-chemistry-synthesis procedure, also known as the metathesis method, to develop three series of ionic liquids using 1-methyl-3-butyl imidazolium, butyl pyridinium, and diethyldibutylammonium as cations, and bromide (Br−), methanesulfonate (CH3SO3−), bis(trifluoromethanesulfonyl)imide (NTf2−), dichloroacetate (CHCl2CO2−), tetrafluoroborate (BF4−), and hydrogen sulfate (HSO4−) as anions. Spectroscopic methods were used to validate the structures of the lab-synthesized ILs. We performed an agar well diffusion assay by using pathogenic bacteria that cause various infections (Escherichia coli; Enterobacter aerogenes; Klebsiella pneumoniae; Proteus vulgaris; Pseudomonas aeruginosa; Streptococcus pneumoniae; Streptococcus pyogenes) to scrutinize the in vitro antibacterial activity of the ILs. It was established that the nature and unique combination of the cations and anions were responsible for the antibacterial activity of the ILs. Among the tested ionic liquids, the imidazolium cation and NTf2− and HSO4− anions exhibited the highest antibacterial activity. The antibacterial potential was further investigated by in silico studies, and it was observed that bis(trifluoromethanesulfonyl)imide (NTf2−) containing imidazolium and pyridinium ionic liquids showed the maximum inhibition against the targeted bacterial strains and could be utilized in antibiotics. These antibacterial activities float the ILs as a promising alternative to the existing antibiotics and antiseptics.
AB - Ionic liquids (ILs) have emerged as active pharmaceutical ingredients because of their excellent antibacterial and biological activities. Herein, we used the green-chemistry-synthesis procedure, also known as the metathesis method, to develop three series of ionic liquids using 1-methyl-3-butyl imidazolium, butyl pyridinium, and diethyldibutylammonium as cations, and bromide (Br−), methanesulfonate (CH3SO3−), bis(trifluoromethanesulfonyl)imide (NTf2−), dichloroacetate (CHCl2CO2−), tetrafluoroborate (BF4−), and hydrogen sulfate (HSO4−) as anions. Spectroscopic methods were used to validate the structures of the lab-synthesized ILs. We performed an agar well diffusion assay by using pathogenic bacteria that cause various infections (Escherichia coli; Enterobacter aerogenes; Klebsiella pneumoniae; Proteus vulgaris; Pseudomonas aeruginosa; Streptococcus pneumoniae; Streptococcus pyogenes) to scrutinize the in vitro antibacterial activity of the ILs. It was established that the nature and unique combination of the cations and anions were responsible for the antibacterial activity of the ILs. Among the tested ionic liquids, the imidazolium cation and NTf2− and HSO4− anions exhibited the highest antibacterial activity. The antibacterial potential was further investigated by in silico studies, and it was observed that bis(trifluoromethanesulfonyl)imide (NTf2−) containing imidazolium and pyridinium ionic liquids showed the maximum inhibition against the targeted bacterial strains and could be utilized in antibiotics. These antibacterial activities float the ILs as a promising alternative to the existing antibiotics and antiseptics.
KW - antibacterial activity
KW - imidazolium
KW - ionic liquids
KW - pyridinium
KW - quaternary ammonium
UR - http://www.scopus.com/inward/record.url?scp=85139973563&partnerID=8YFLogxK
U2 - 10.3390/molecules27196650
DO - 10.3390/molecules27196650
M3 - Article
C2 - 36235187
AN - SCOPUS:85139973563
SN - 1420-3049
VL - 27
JO - Molecules
JF - Molecules
IS - 19
M1 - 6650
ER -