TY - JOUR
T1 - Synthesis and size control of luminescent II-VI semiconductor nanocrystals by a novel microemulsion-gas contacting technique
AU - Karanikolos, Georgios N.
AU - Alexandridis, Paschalis
AU - Petrou, Athos
AU - Mountziaris, T. J.
PY - 2003
Y1 - 2003
N2 - A scalable, room-temperature technique for controlled synthesis of luminescent II-VI nanocrystals has been developed by using the dispersed phase of stable, well-characterized microemulsions as templates for nanoparticle synthesis. The microemulsions were formed by self-assembly of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) (PEO-PPO-PEO) amphiphilic block copolymer and heptane in formamide. By adjusting the surfactant to dispersed phase ratio, stable microemulsions were obtained with droplet diameter of ∼40nm. These microemulsions avoid problems or rapid droplet-droplet coalescence that hamper reverse micelles and lead to polydisperse particle populations. Luminescent ZnSe quantum dots were synthesized by reacting diethylzinc (dissolved in the heptane dispersed phase) with hydrogen selenide gas (diluted in hydrogen). The gas was bubbled through the microemulsion, dissolved in the formamide, and diffused to the nanodroplet interfaces to react with diethylzinc. The experiments indicate that a single nanocrystal is formed in each nanodroplet by coalescence of clusters (nuclei) and smaller crystals. The energy released during coalescence is sufficient to anneal the clusters into high-quality crystals. The process allows precise control of nanocrystal size by adjusting the initial concentration of diethylzinc in heptane. The "as grown" nanocrystals exhibit size-dependent luminescence, narrow and symmetric emission, good monodispersity (confirmed by TEM analysis), and excellent photochemical stability. The technique is currently being extended to the synthesis of CdSe nanocrystals with promising preliminary results.
AB - A scalable, room-temperature technique for controlled synthesis of luminescent II-VI nanocrystals has been developed by using the dispersed phase of stable, well-characterized microemulsions as templates for nanoparticle synthesis. The microemulsions were formed by self-assembly of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) (PEO-PPO-PEO) amphiphilic block copolymer and heptane in formamide. By adjusting the surfactant to dispersed phase ratio, stable microemulsions were obtained with droplet diameter of ∼40nm. These microemulsions avoid problems or rapid droplet-droplet coalescence that hamper reverse micelles and lead to polydisperse particle populations. Luminescent ZnSe quantum dots were synthesized by reacting diethylzinc (dissolved in the heptane dispersed phase) with hydrogen selenide gas (diluted in hydrogen). The gas was bubbled through the microemulsion, dissolved in the formamide, and diffused to the nanodroplet interfaces to react with diethylzinc. The experiments indicate that a single nanocrystal is formed in each nanodroplet by coalescence of clusters (nuclei) and smaller crystals. The energy released during coalescence is sufficient to anneal the clusters into high-quality crystals. The process allows precise control of nanocrystal size by adjusting the initial concentration of diethylzinc in heptane. The "as grown" nanocrystals exhibit size-dependent luminescence, narrow and symmetric emission, good monodispersity (confirmed by TEM analysis), and excellent photochemical stability. The technique is currently being extended to the synthesis of CdSe nanocrystals with promising preliminary results.
UR - http://www.scopus.com/inward/record.url?scp=2942659725&partnerID=8YFLogxK
U2 - 10.1557/proc-789-n15.55
DO - 10.1557/proc-789-n15.55
M3 - Conference article
AN - SCOPUS:2942659725
SN - 0272-9172
VL - 789
SP - 389
EP - 394
JO - Materials Research Society Symposium - Proceedings
JF - Materials Research Society Symposium - Proceedings
T2 - Quantum Dots, Nanoparticles and Nanowires
Y2 - 1 December 2003 through 5 December 2003
ER -