TY - JOUR
T1 - Synergistic effects of activated carbon and nano-zerovalent copper on the performance of hydroxyapatite-alginate beads for the removal of As3+ from aqueous solution
AU - Iqbal, Jibran
AU - Shah, Noor S.
AU - Sayed, Murtaza
AU - Imran, Muhammad
AU - Muhammad, Nawshad
AU - Howari, Fares M.
AU - Alkhoori, Sara A.
AU - Khan, Javed Ali
AU - Haq Khan, Zia Ul
AU - Bhatnagar, Amit
AU - Polychronopoulou, Kyriaki
AU - Ismail, Issam
AU - Haija, Mohammad Abu
N1 - Funding Information:
The research was supported by the research cluster grant ( R18029 ) from Zayed University , Abu Dhabi, United Arab Emirates and COMSATS University Research Grant Program (CRGP).
Publisher Copyright:
© 2019 Elsevier Ltd
PY - 2019/10/20
Y1 - 2019/10/20
N2 - In this study, activated carbon (AC) and nano-zerovalent copper (nZVCu) functionalized hydroxyapatite (HA) and alginate beads were synthesized and used for the removal of As3+ from aqueous solution. The characterization by X-ray diffraction, scanning electron microscopy, X-ray energy dispersive spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, high resolution transmission electron microscopy, BET surface area analysis, thermogravimetric analysis, and Fourier transform infrared spectroscopy revealed successful formation of the AC/nZVCu/HA-alginate, nZVCu/HA-alginate, AC/HA-alginate, and HA-alginate beads. The scanning electron microscopy and surface analysis revealed the prepared beads to be highly mesoporous which led to the maximum adsorption of As3+, i.e., 13.97, 29.33, 30.96, and 39.06 mg/g by HA-alginate, AC/HA-alginate, nZVCu/HA-alginate, and AC/nZVCu/HA-alginate beads, respectively. The thermogravimteric analysis showed the nZVCu/HA-alginate beads to be highly stable while the AC composite beads as the least stable to heat treatment. The HA-alginate beads achieved 39% removal of As3+, however, removal efficiency was promoted to 95% by coupling AC and nZVCu with HA-alginate beads at a reaction time of 120 min. The removal of As3+ by the prepared AC & nZVCu coupled HA-alginate beads was promoted with increasing [As3+]0 and [AC/nZVCu/HA-alginate]0. The pH of aqueous solution significantly influenced the removal of As3+ by AC/nZVCu/HA-alginate beads and maximum removal was achieved at pH 5.8. Freundlich adsorption isotherm and pseudo-second-order kinetic models were found to best fit the removal of As3+ by the synthesized beads. The high performance of AC/nZVCu/HA-alginate beads in the removal of As3+ even after seven cyclic treatment as well as least leaching of Cu ions into aqueous solution suggest enhanced reusability and stability of HA-alginate beads by coupling with AC and nZVCu. The results suggest that the synthesized beads have good potential for the removal of As3+ from aqueous solutions.
AB - In this study, activated carbon (AC) and nano-zerovalent copper (nZVCu) functionalized hydroxyapatite (HA) and alginate beads were synthesized and used for the removal of As3+ from aqueous solution. The characterization by X-ray diffraction, scanning electron microscopy, X-ray energy dispersive spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, high resolution transmission electron microscopy, BET surface area analysis, thermogravimetric analysis, and Fourier transform infrared spectroscopy revealed successful formation of the AC/nZVCu/HA-alginate, nZVCu/HA-alginate, AC/HA-alginate, and HA-alginate beads. The scanning electron microscopy and surface analysis revealed the prepared beads to be highly mesoporous which led to the maximum adsorption of As3+, i.e., 13.97, 29.33, 30.96, and 39.06 mg/g by HA-alginate, AC/HA-alginate, nZVCu/HA-alginate, and AC/nZVCu/HA-alginate beads, respectively. The thermogravimteric analysis showed the nZVCu/HA-alginate beads to be highly stable while the AC composite beads as the least stable to heat treatment. The HA-alginate beads achieved 39% removal of As3+, however, removal efficiency was promoted to 95% by coupling AC and nZVCu with HA-alginate beads at a reaction time of 120 min. The removal of As3+ by the prepared AC & nZVCu coupled HA-alginate beads was promoted with increasing [As3+]0 and [AC/nZVCu/HA-alginate]0. The pH of aqueous solution significantly influenced the removal of As3+ by AC/nZVCu/HA-alginate beads and maximum removal was achieved at pH 5.8. Freundlich adsorption isotherm and pseudo-second-order kinetic models were found to best fit the removal of As3+ by the synthesized beads. The high performance of AC/nZVCu/HA-alginate beads in the removal of As3+ even after seven cyclic treatment as well as least leaching of Cu ions into aqueous solution suggest enhanced reusability and stability of HA-alginate beads by coupling with AC and nZVCu. The results suggest that the synthesized beads have good potential for the removal of As3+ from aqueous solutions.
KW - Activated carbon
KW - As
KW - Hydroxyapatite-alginate beads
KW - Nano-zerovalent copper
KW - Water treatment
UR - http://www.scopus.com/inward/record.url?scp=85068505113&partnerID=8YFLogxK
U2 - 10.1016/j.jclepro.2019.06.316
DO - 10.1016/j.jclepro.2019.06.316
M3 - Article
AN - SCOPUS:85068505113
SN - 0959-6526
VL - 235
SP - 875
EP - 886
JO - Journal of Cleaner Production
JF - Journal of Cleaner Production
ER -