Synergistic effect of humic acid on alkali pretreatment of sugarcane bagasse for the recovery of lignin with phenomenal properties

R. Uma Maheswari, Musthafa O. Mavukkandy, Utpal Adhikari, Vincenzo Naddeo, Jaya Sikder, Hassan A. Arafat

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Lignin forms a recalcitrant structure in lignocellulosic biomass and hence huge amount of enzymes are required for disintegrating it into their subsequent components, like glucose and other by-products. Thus, the pretreatment is an ineluctable step in the bioethanol scheme for the delignification of biomass and also the recovery of lignin, an emerging value added polymer in many industrial applications. A green facile method was developed wherein humic acid (HA) acts as a catalyst and surfactant in the alkali pretreatment of sugarcane bagasse for the step reduction in lignin recovery scheme with phenomenal properties and enhanced enzymatic-hydrolysis. HA assisted experiments were performed with and without calcium chloride (CaCl2). Effective disintegration of lignocellulose by the cleavage of β-O-4 moieties resulted in forming lignin and hydrolyzable biomaterial via two pathways. Possible covalent linkages between the HA and lignin resulted in the release of esters as a byproduct. Thus, the delignified biomass, the isolated lignin and a variety of esters, could be valorised in various industrial applications. The biomass was characterized by XRD and SEM analysis. The isolated lignin was characterized using FTIR, NMR, GPC, SEM, and TGA – DTA studies. The yield of recovered pure lignin for the two process was 90–100%, as measured through gravimetric analysis. The produced esters were confirmed using FTIR studies. Batch enzymatic hydrolysis was performed for the HA assisted de-lignified bagasse (without CaCl2), which demonstrated a 19% increase in glucose yield compared to the alkali treated bagasse. The produced hydrolysates were subjected to fermentation for the production of ethanol.

Original languageBritish English
Article number105486
JournalBiomass and Bioenergy
Volume134
DOIs
StatePublished - Mar 2020

Keywords

  • Bagasse
  • Enzymatic hydrolysis
  • Fermentation
  • Fragmentation
  • Humic acid
  • Lignin recovery

Fingerprint

Dive into the research topics of 'Synergistic effect of humic acid on alkali pretreatment of sugarcane bagasse for the recovery of lignin with phenomenal properties'. Together they form a unique fingerprint.

Cite this