Abstract
The increased generation of electrical energy from renewable sources and its integration into the low voltage grid have necessitated regulations governing the connection of renewable energy generators to the grid. This was deemed necessary to preserve the integrity and the correct operation of the grid. This paper presents a new architecture of a hybrid phase lock loop circuit topology for synchronizing a single-phase inverter fed from a renewable energy source such as a photovoltaic (PV) generator to the low voltage grid. The system uses a digital phase lock loop (DPLL) architecture, which is based on the arctan phase detector, driving a phase lock loop (PLL) to synchronize a PV inverter with the grid. The proposed system has been tested by simulation using simulink/matlab. The test results demonstrate the ability of the system to synchronize a PV inverter with the grid and to re-establish synchronization following a sudden perturbation in the grid voltage such as a single or a multistep change in phase. The system is digital and can be readily implemented using an FPGA (field programmable gate array) and hence can be easily embedded in a home or small scale single-phase PV inverter.
Original language | British English |
---|---|
Article number | 011007 |
Journal | Journal of Solar Energy Engineering, Transactions of the ASME |
Volume | 134 |
Issue number | 1 |
DOIs | |
State | Published - 2012 |