Surface properties of alkylsilane treated date palm fiber

Helanka J. Perera, Anjali Goyal, Saeed M. Alhassan

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

The present work focuses on investigating the effect of non-fluoro short-chain alkylsilane treatment on the surface characteristic of date palm (Phoenix dactylifera) fiber. Raw date palm fiber (DPF) was treated with octylsilane and the surface properties of treated fiber was investigated using thermogravimetric analysis (TGA), fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), contact angle analysis and X-ray diffraction (XRD) on configuring the thermal stability, chemical structures and surface properties (morphology, hydrophobicity and crystallinity). The decomposition temperature of 75% mass loss raw and treated DPF, the onset of temperatures were increased from 464 to 560 °C with the introduction of alkylsilane. Hydrophobicity and crystallinity index of the DPF fibers were increased from 66.8° to 116° and 31 to 41, introducing octylsilane to raw DPF. The SEM and XRD experimental results showed that the octylsilane treatment could effectively increase the pore size and crystallinity index as an indication of the removal of non-crystalline cellulosic materials from DPFs. Thermal stability, hydrophobicity and crystallinity of the fibers increased on DFP after alkylsilane treatment. The results indicated that alkylsilane-treated DPFs were a suitable reinforcing substitute for hydrophobic polymer composite.

Original languageBritish English
Article number9760
JournalScientific Reports
Volume12
Issue number1
DOIs
StatePublished - Dec 2022

Fingerprint

Dive into the research topics of 'Surface properties of alkylsilane treated date palm fiber'. Together they form a unique fingerprint.

Cite this