Study of synergistic disinfection by UVC and positive/negative air ions for aerosolized Escherichia coli, Salmonella typhimurium, and Staphylococcus epidermidis in ventilation duct flow

Sunday S. Nunayon, Hui H. Zhang, Vincent Chan, Richard Y.C. Kong, Alvin C.K. Lai

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

The efficacy of the in-duct application of ultraviolet waveband C (UVC) emitting at 254 nm wavelength and air ions against aerosolized bacteria was studied in a full-scale 9-m long ventilation duct. Combined positive and negative ion polarities (bipolar ions) and combined UVC and ions were tested. The UVC was generated by a mercury-type UVC lamp and air ions were generated by positive and negative polarity ionizers. Escherichia coli (E. coli), Salmonella typhimurium (S. typhimurium), and Staphylococcus epidermidis (S. epidermidis)were tested at a concentration of 108 to 109 cells in 50 ml of sterilized distilled water. The case in which the positive ionizer was placed first, followed by the negative ionizer, demonstrated significantly higher disinfection efficiencies for E. coli (p = 0.007) and S. typhimurium (p < 0.001), but lower efficiency for S. epidermidis (p = 0.01) than the reversed sequence. The combination of UVC (3.71 J/m2) and air ions (1.13 × 1012 ions/m3 for positive ions and 8.00 × 1011 ions/m3 for negative ions) led to higher inactivation than individual disinfection agents operating under the same dose. A synergetic inactivation effect was observed for S. epidermidis under the combined UVC and positive ion case, while the combined UVC and negative ion case showed significant synergy effects for E. coli and S. typhimurium.

Original languageBritish English
Article numbere12957
JournalIndoor Air
Volume32
Issue number1
DOIs
StatePublished - Jan 2022

Fingerprint

Dive into the research topics of 'Study of synergistic disinfection by UVC and positive/negative air ions for aerosolized Escherichia coli, Salmonella typhimurium, and Staphylococcus epidermidis in ventilation duct flow'. Together they form a unique fingerprint.

Cite this