Strain engineering effect on surprising magnetic semiconducting behavior in zigzag arsenene nanoribbons

M. Abid, Anwer Shoaib, Imran Aslam, Muhammad Asim Farid

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


The enduring goal in condensed matter physics is to search for controlled magnetism in semiconducting materials. Based on first principles DFT calculations, we systematically investigate the electronic and magnetic properties of zigzag arsenene nanoribbons (ZAsNRs). We find that metallic edge states originate in the middle of bulk band gap for different widths of ZAsNRs due to electronic instability. Besides, edge magnetism for different magnetic configurations of ZAsNRs, have been investigated to remove these instabilities. There occurs a transition from non-magnetic to magnetic and metallic to semi-conducting edge states and as a result an intra-edge antiferromagnetic (AFM) semiconducting ground state has been found. In order to tune the edge states, strain engineering is employed on magnetic ground state and found that at critical value of compressive strains (−6%), there happens a transition from magnetic to nonmagnetic (NM) and semiconductor to metal. We expect that these semiconducting properties can be controlled by edge magnetism and strain engineering and make ZAsNRs a best semiconducting material which can be used as promising candidate for device applications in semiconducting industry.

Original languageBritish English
Pages (from-to)185-190
Number of pages6
JournalComputational Materials Science
StatePublished - Nov 2017


  • AFM semiconducting ground state
  • Edge magnetism
  • First principles calculations
  • Metallic edge states
  • Strain engineering


Dive into the research topics of 'Strain engineering effect on surprising magnetic semiconducting behavior in zigzag arsenene nanoribbons'. Together they form a unique fingerprint.

Cite this