Strain engineered thermodynamic stability, electronic and thermoelectric characteristics of TiB2 and ZrB2 monolayers

Shubham Tyagi, Rajneesh Chaurasiya, Nirpendra Singh, Ambesh Dixit

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

The thermodynamic stability, electronic, and thermoelectric properties of TiB2 and ZrB2 are computed using density functional and Boltzmann transport theory. The phonon band dispersion of ZrB2 monolayer exhibits dynamic instability with the presence of imaginary frequency. The small direct bandgap is noticed for these monolayers. More interestingly, the biaxial strain improves the dynamic stability of ZrB2 monolayer. In addition, the electronic properties are not changing significantly for the considered monolayers. The strain modulated Seebeck coefficient, electrical conductivity, and electronic thermal conductivity are investigated to understand the thermoelectric properties. The Seebeck coefficient is reducing while electrical conductivity and electronic thermal conductivity are improving with increasing temperature. The Seebeck coefficient is decreasing with increasing the biaxial tensile strain. Moreover, the electrical conductivity and electronic thermal conductivity values are increasing with the increasing strain. Further, a very large lattice thermal conductivity is observed for TiB2 monolayer as compared to ZrB2 monolayer. Thus, strain can be used to enhance the dynamic stability and modulate the thermoelectric properties of such systems and TiB2 monolayer may be a potential low temperature efficient thermoelectric material because of its small bandgap and high thermal conductivity at low temperatures.

Original languageBritish English
Article number115477
JournalPhysica E: Low-Dimensional Systems and Nanostructures
Volume145
DOIs
StatePublished - Jan 2023

Keywords

  • 2D materials
  • Diborides
  • Dynamic stability
  • Monolayer
  • Thermoelectric

Fingerprint

Dive into the research topics of 'Strain engineered thermodynamic stability, electronic and thermoelectric characteristics of TiB2 and ZrB2 monolayers'. Together they form a unique fingerprint.

Cite this