TY - JOUR
T1 - StethoNet
T2 - Robust Breast Cancer Mammography Classification Framework
AU - Lamprou, Charalampos
AU - Katsikari, Kyriaki
AU - Rahmani, Noora
AU - Hadjileontiadis, Leontios J.
AU - Seghier, Mohamed
AU - Alshehhi, Aamna
N1 - Publisher Copyright:
© 2024 The Authors.
PY - 2024
Y1 - 2024
N2 - Despite the emergence of numerous Deep Learning (DL) models for breast cancer detection via mammograms, there is a lack of evidence about their robustness to perform well on new unseen mammograms. To fill this gap, we introduce StethoNet, a DL-based framework that consists of multiple Convolutional Neural Network (CNN) trained models for classifying benign and malignant tumors. StethoNet was trained on the Chinese Mammography Database (CMMD), and tested on unseen images from CMMD, as well as on images from two independent datasets, i.e., the Vindr-Mammo and the INbreast datasets. To mitigate domain-shift effects, we applied an effective entropy-based domain adaptation technique at the preprocessing stage. Furthermore, a Bayesian hyperparameters optimization scheme was implemented for StethoNet optimization. To ensure interpretable results that corroborate with prior clinical knowledge, attention maps generated using Gradient-weighted Class Activation Mapping (GRADCAM) were compared with Regions of Interest (ROIs) identified by radiologists. StethoNet achieved impressive Area Under the receiver operating characteristics Curve (AUC) scores: 90.7% (88.6%-92.8%), 83.9% (76.0%-91.8%), and 85.7% (82.1%-89.4%) for the CMMD, INbreast, and Vindr-Mammo datasets, respectively. These results surpass the current state of the art and highlight the robustness and generalizability of StethoNet, scaffolding the integration of DL models into breast cancer mammography screening workflows.
AB - Despite the emergence of numerous Deep Learning (DL) models for breast cancer detection via mammograms, there is a lack of evidence about their robustness to perform well on new unseen mammograms. To fill this gap, we introduce StethoNet, a DL-based framework that consists of multiple Convolutional Neural Network (CNN) trained models for classifying benign and malignant tumors. StethoNet was trained on the Chinese Mammography Database (CMMD), and tested on unseen images from CMMD, as well as on images from two independent datasets, i.e., the Vindr-Mammo and the INbreast datasets. To mitigate domain-shift effects, we applied an effective entropy-based domain adaptation technique at the preprocessing stage. Furthermore, a Bayesian hyperparameters optimization scheme was implemented for StethoNet optimization. To ensure interpretable results that corroborate with prior clinical knowledge, attention maps generated using Gradient-weighted Class Activation Mapping (GRADCAM) were compared with Regions of Interest (ROIs) identified by radiologists. StethoNet achieved impressive Area Under the receiver operating characteristics Curve (AUC) scores: 90.7% (88.6%-92.8%), 83.9% (76.0%-91.8%), and 85.7% (82.1%-89.4%) for the CMMD, INbreast, and Vindr-Mammo datasets, respectively. These results surpass the current state of the art and highlight the robustness and generalizability of StethoNet, scaffolding the integration of DL models into breast cancer mammography screening workflows.
KW - Breast cancer
KW - deep learning
KW - mammographic image
KW - transfer learning
UR - https://www.scopus.com/pages/publications/85206814833
U2 - 10.1109/ACCESS.2024.3473010
DO - 10.1109/ACCESS.2024.3473010
M3 - Article
AN - SCOPUS:85206814833
SN - 2169-3536
VL - 12
SP - 144890
EP - 144904
JO - IEEE Access
JF - IEEE Access
ER -