TY - JOUR
T1 - Stereological Evidence of Non-Selective Hippocampal Neurodegeneration, IGF-1 Depletion, and Behavioral Deficit following Short Term Bilateral Adrenalectomy in Wistar Rats
AU - Hamadi, Naserddine
AU - Deniz, Ömür Gülsüm
AU - Issa, Ahlam Said Abi
AU - Islam, Azim Ullah Shamsul
AU - Amir, Naheed
AU - Minhas, Saeed Tariq
AU - Madjid, Nather
AU - Khelifi-Touhami, Fatima
AU - Kaplan, Süleyman
AU - Adem, Abdu
N1 - Funding Information:
This study was funded by Faculty grant (NP14-42) from the College of Medicine and Health Sciences, UAE University.
Publisher Copyright:
© 2022 by the authors.
PY - 2023/1
Y1 - 2023/1
N2 - The development of animal models to study cell death in the brain is a delicate task. One of the models, that was discovered in the late eighties, is the induction of neurodegeneration through glucocorticoid withdrawal by adrenalectomy in albino rats. Such a model is one of the few noninvasive models for studying neurodegeneration. In the present study, using stereological technique and ultrastructural examination, we aimed to investigate the impact of short-term adrenalectomy (2 weeks) on different hippocampal neuronal populations in Wistar rats. In addition, the underlying mechanism(s) of degeneration in these neurons were investigated by measuring the levels of insulin-like growth factor-1 (IGF-1) and β-nerve growth factor (β-NGF). Moreover, we examined whether the biochemical and histological changes in the hippocampus, after short-term adrenalectomy, have an impact on the cognitive behavior of Wistar rats. Stereological counting in the hippocampus revealed significant neuronal deaths in the dentate gyrus and CA4/CA3, but not in the CA2 and CA1 areas, 7 and 14 days post adrenalectomy. The ultrastructural examinations revealed degenerated and degenerating neurons in the dentate, as well as CA4, and CA3 areas, over the course of 3, 7 and 14 days. The levels of IGF-1 were significantly decreased in the hippocampus of ADX rats 24 h post adrenalectomy, and lasted over the course of two weeks. However, β-NGF was not affected in rats. Using a passive avoidance task, we found a cognitive deficit in the ADX compared to the SHAM operated rats over time (3, 7, and 14 days). In conclusion, both granule and pyramidal cells were degenerated in the hippocampus following short-term adrenalectomy. The early depletion of IGF-1 might play a role in hippocampal neuronal degeneration. Consequently, the loss of the hippocampal neurons after adrenalectomy leads to cognitive deficits.
AB - The development of animal models to study cell death in the brain is a delicate task. One of the models, that was discovered in the late eighties, is the induction of neurodegeneration through glucocorticoid withdrawal by adrenalectomy in albino rats. Such a model is one of the few noninvasive models for studying neurodegeneration. In the present study, using stereological technique and ultrastructural examination, we aimed to investigate the impact of short-term adrenalectomy (2 weeks) on different hippocampal neuronal populations in Wistar rats. In addition, the underlying mechanism(s) of degeneration in these neurons were investigated by measuring the levels of insulin-like growth factor-1 (IGF-1) and β-nerve growth factor (β-NGF). Moreover, we examined whether the biochemical and histological changes in the hippocampus, after short-term adrenalectomy, have an impact on the cognitive behavior of Wistar rats. Stereological counting in the hippocampus revealed significant neuronal deaths in the dentate gyrus and CA4/CA3, but not in the CA2 and CA1 areas, 7 and 14 days post adrenalectomy. The ultrastructural examinations revealed degenerated and degenerating neurons in the dentate, as well as CA4, and CA3 areas, over the course of 3, 7 and 14 days. The levels of IGF-1 were significantly decreased in the hippocampus of ADX rats 24 h post adrenalectomy, and lasted over the course of two weeks. However, β-NGF was not affected in rats. Using a passive avoidance task, we found a cognitive deficit in the ADX compared to the SHAM operated rats over time (3, 7, and 14 days). In conclusion, both granule and pyramidal cells were degenerated in the hippocampus following short-term adrenalectomy. The early depletion of IGF-1 might play a role in hippocampal neuronal degeneration. Consequently, the loss of the hippocampal neurons after adrenalectomy leads to cognitive deficits.
KW - adrenalectomy
KW - hippocampus
KW - neurodegeneration
KW - passive avoidance
KW - stereology
UR - http://www.scopus.com/inward/record.url?scp=85146556578&partnerID=8YFLogxK
U2 - 10.3390/biom13010022
DO - 10.3390/biom13010022
M3 - Article
C2 - 36671407
AN - SCOPUS:85146556578
SN - 2218-273X
VL - 13
JO - Biomolecules
JF - Biomolecules
IS - 1
M1 - 22
ER -