Spatio-temporal artificial noise design for secure MISOSE-OFDM systems

Ahmed El Shafie, Zhiguo Ding, Naofal Al-Dhahir

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

This paper investigates artificial noise injection into the temporal and spatial dimensions of a legitimate wireless communication system to secure its transmissions from potential eavesdropping. We consider a multiple-input single-output (MISO) orthogonal frequency division multiplexing (OFDM) system in the presence of a single-antenna passive eavesdropper and derive both the secrecy rate and average secrecy rate of the legitimate system. It is assumed that the legitimate transmitter knows the full channel information of the legitimate transceivers but does not know the instantaneous channel state information of the passive eavesdropper. Closed-form expressions for the secrecy rate and average secrecy rate are derived for the asymptotic case with a large number of transmit antennas. We also investigate 1) the power allocation between the data and the AN; 2) the power allocation between the spatial and the temporal AN. Computer simulations are carried out to evaluate the performance of our proposed artificial noise scheme.

Original languageBritish English
Title of host publication2016 IEEE Global Communications Conference, GLOBECOM 2016 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781509013289
DOIs
StatePublished - 2016
Event59th IEEE Global Communications Conference, GLOBECOM 2016 - Washington, United States
Duration: 4 Dec 20168 Dec 2016

Publication series

Name2016 IEEE Global Communications Conference, GLOBECOM 2016 - Proceedings

Conference

Conference59th IEEE Global Communications Conference, GLOBECOM 2016
Country/TerritoryUnited States
CityWashington
Period4/12/168/12/16

Fingerprint

Dive into the research topics of 'Spatio-temporal artificial noise design for secure MISOSE-OFDM systems'. Together they form a unique fingerprint.

Cite this