TY - JOUR
T1 - Silk Industry Waste Protein-Derived Sericin Hybrid Nanoflowers for Antibiotics Remediation via Circular Economy
AU - Koshy, Divya S.
AU - Allardyce, Benjamin J.
AU - Dumée, Ludovic F.
AU - Sutti, Alessandra
AU - Rajkhowa, Rangam
AU - Agrawal, Ruchi
N1 - Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.
PY - 2024/4/9
Y1 - 2024/4/9
N2 - Hybrid protein-copper nanoflowers have emerged as promising materials with diverse applications in biocatalysis, biosensing, and bioremediation. Sericin, a waste biopolymer from the textile industry, has shown potential for fabricating such nanoflowers. However, the influence of the molecular weight of sericin on nanoflower morphology and peroxidase-like activity remains unexplored. This work focused on the self-assembly of nanoflowers using high- and low-molecular-weight (HMW and LMW) silk sericin combined with copper(II) as an inorganic moiety. The peroxidase-like activity of the resulting nanoflowers was evaluated using 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and hydrogen peroxide (H2O2). The findings revealed that high-molecular-weight sericin hybrid nanoflowers (HMW-ShNFs) exhibited significantly higher peroxidase-like activity than low-molecular-weight sericin hybrid nanoflowers (LMW-ShNFs). Furthermore, HMW-ShNFs demonstrated superior reusability and storage stability, thereby enhancing their potential for practical use. This study also explored the application of HMW-ShNF for ciprofloxacin degradation to address the environmental and health hazards posed by this antibiotic in water. The results indicated that HMW-ShNFs facilitated the degradation of ciprofloxacin, achieving a maximum degradation of 33.2 ± 1% at pH 8 and 35 °C after 72 h. Overall, the enhanced peroxidase-like activity and successful application in ciprofloxacin degradation underscore the potential of HMW-ShNFs for a sustainable and ecofriendly remediation process. These findings open avenues for the further exploration and utilization of hybrid nanoflowers in various environmental applications.
AB - Hybrid protein-copper nanoflowers have emerged as promising materials with diverse applications in biocatalysis, biosensing, and bioremediation. Sericin, a waste biopolymer from the textile industry, has shown potential for fabricating such nanoflowers. However, the influence of the molecular weight of sericin on nanoflower morphology and peroxidase-like activity remains unexplored. This work focused on the self-assembly of nanoflowers using high- and low-molecular-weight (HMW and LMW) silk sericin combined with copper(II) as an inorganic moiety. The peroxidase-like activity of the resulting nanoflowers was evaluated using 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and hydrogen peroxide (H2O2). The findings revealed that high-molecular-weight sericin hybrid nanoflowers (HMW-ShNFs) exhibited significantly higher peroxidase-like activity than low-molecular-weight sericin hybrid nanoflowers (LMW-ShNFs). Furthermore, HMW-ShNFs demonstrated superior reusability and storage stability, thereby enhancing their potential for practical use. This study also explored the application of HMW-ShNF for ciprofloxacin degradation to address the environmental and health hazards posed by this antibiotic in water. The results indicated that HMW-ShNFs facilitated the degradation of ciprofloxacin, achieving a maximum degradation of 33.2 ± 1% at pH 8 and 35 °C after 72 h. Overall, the enhanced peroxidase-like activity and successful application in ciprofloxacin degradation underscore the potential of HMW-ShNFs for a sustainable and ecofriendly remediation process. These findings open avenues for the further exploration and utilization of hybrid nanoflowers in various environmental applications.
UR - http://www.scopus.com/inward/record.url?scp=85179185360&partnerID=8YFLogxK
U2 - 10.1021/acsomega.3c03367
DO - 10.1021/acsomega.3c03367
M3 - Article
AN - SCOPUS:85179185360
SN - 2470-1343
VL - 9
SP - 15768
EP - 15780
JO - ACS Omega
JF - ACS Omega
IS - 14
ER -