TY - JOUR
T1 - Shale wettability
T2 - Data sets, challenges, and outlook
AU - Arif, Muhammad
AU - Zhang, Yihuai
AU - Iglauer, Stefan
N1 - Funding Information:
The authors would like to acknowledge Khalifa University for funding provided through ADERP Grant 8474000242 (FSU-2020-18).
Publisher Copyright:
© 2021 American Chemical Society.
PY - 2021/2/18
Y1 - 2021/2/18
N2 - The wetting characteristics of shale rocks at representative subsurface conditions remain an area of active debate. A precise characterization of shale wettability is essential for enhanced oil and gas recovery, containment security during CO2 geo-storage, and flow back efficiency during hydraulic fracturing. While several methods were utilized in the literature to evaluate shale wettability (e.g., contact angle measurements, spontaneous imbibition method, and NMR method), we here review the recently published data sets on shale contact angle measurements. The objectives of this review are to (a) develop a repository of the recent shale wettability data sets using contact angle measurements at high pressure and temperature (HPHT) conditions, (b) explore the factors influencing shale wettability, (c) identify potential limitations associated with contact angle methods, and (d) provide a research outlook for this area. On the basis of the data reviewed here, we conclude the following: (1) Shale/oil/brine systems demonstrate water-wet to strongly oil-wet wetting behaviors. (2) Shale/CO2/brine systems are usually weakly water-wet to CO2-wet. (3) Shale/CH4/brine systems are weakly water-wet. The key contributing factors that underpin this high shale wettability variability include, but are not limited to, operating pressure and temperature conditions, total organic content (TOC), mineral matter, and thermal maturity conditions. Thus, this review provides a succinct analysis of the shale wettability contact angle data sets and affords an overview of the current state of the art technology and possible future developments in this area to enhance the understanding of shale wettability.
AB - The wetting characteristics of shale rocks at representative subsurface conditions remain an area of active debate. A precise characterization of shale wettability is essential for enhanced oil and gas recovery, containment security during CO2 geo-storage, and flow back efficiency during hydraulic fracturing. While several methods were utilized in the literature to evaluate shale wettability (e.g., contact angle measurements, spontaneous imbibition method, and NMR method), we here review the recently published data sets on shale contact angle measurements. The objectives of this review are to (a) develop a repository of the recent shale wettability data sets using contact angle measurements at high pressure and temperature (HPHT) conditions, (b) explore the factors influencing shale wettability, (c) identify potential limitations associated with contact angle methods, and (d) provide a research outlook for this area. On the basis of the data reviewed here, we conclude the following: (1) Shale/oil/brine systems demonstrate water-wet to strongly oil-wet wetting behaviors. (2) Shale/CO2/brine systems are usually weakly water-wet to CO2-wet. (3) Shale/CH4/brine systems are weakly water-wet. The key contributing factors that underpin this high shale wettability variability include, but are not limited to, operating pressure and temperature conditions, total organic content (TOC), mineral matter, and thermal maturity conditions. Thus, this review provides a succinct analysis of the shale wettability contact angle data sets and affords an overview of the current state of the art technology and possible future developments in this area to enhance the understanding of shale wettability.
UR - http://www.scopus.com/inward/record.url?scp=85101009176&partnerID=8YFLogxK
U2 - 10.1021/acs.energyfuels.0c04120
DO - 10.1021/acs.energyfuels.0c04120
M3 - Article
AN - SCOPUS:85101009176
SN - 0887-0624
VL - 35
SP - 2965
EP - 2980
JO - Energy and Fuels
JF - Energy and Fuels
IS - 4
ER -