TY - JOUR
T1 - Seismic stratigraphy and hydrocarbon prospectivity of the Lower Cretaceous Knurr Sandstone lobes along the southern margin of Loppa High, Hammerfest Basin, Barents Sea
AU - Sattar, Nauman
AU - Juhlin, Christopher
AU - Koyi, Hemin
AU - Ahmad, Nadeem
N1 - Publisher Copyright:
© 2017 Elsevier Ltd
PY - 2017/8/1
Y1 - 2017/8/1
N2 - The Lower Cretaceous Knurr Sandstone deposited along the southern slope of Loppa High and overlain by the Kolje and Kolmule seals forms an attractive play in the Hammerfest Basin of the Barents Sea. Late Jurassic organic-rich Hekkingen shale directly underlies the Knurr Sandstone and acts as a source to provide effective charge. Three wells, 7120/2-2, 7122/2-1 and 7120/1-2, have proven the Knurr-Kolje play in structural traps, with an oil discovery in 7120/1-2. Prospectivity related to stratigraphic traps is, however, highly under-explored. In order to document and map the reservoir distribution and stratigraphic-trap fairway, the Lower Cretaceous sedimentary package containing the Knurr Sandstone is divided into a number of depositional sequences and systems tracts using key regional seismic profiles calibrated with logs. Mapping of the key surfaces bounding the Knurr sandstone has been carried out using all the seismic vintages available from Norwegian Petroleum Directorate (NPD).The thick massive nature of the sandstone (123 m in well 7122/2-1), sedimentary features characteristic of gravity flow deposits, high-resolution internal seismic reflections and stratal geometries (truncations and lapout patterns), and sequence stratigraphic position of the Knurr Sandstone on seismic profiles confirm that the lobes identified on the seismic section are gravity driven base of the slope lobes. These Knurr lobes and slope aprons were formed as a result of uplift of the Loppa paleo-high in the Late Jurassic to Early Cretaceous times which caused subaerial exposure and incision. The characteristic mounded, lobate geometry evident on the seismic can be mapped along the toe-of-slope and records multiple stacked lobes fed by multiple feeder canyons. Lateral partitioning and separation of the lobes along the toe-of-slope could potentially create stratigraphic traps. The existing 2D seismic coverage is, however, not sufficient to capture lateral stratigraphic heterogeneity to identify stratigraphic traps. 3D seismic coverage with optimum acquisition parameters (high spatial and vertical resolution, appropriate seismic frequency and fold, long offsets and original amplitudes preserved) can allow for the reconstruction of 3D geomorphologic elements to de-risk potential stratigraphic traps prior to exploratory drilling.
AB - The Lower Cretaceous Knurr Sandstone deposited along the southern slope of Loppa High and overlain by the Kolje and Kolmule seals forms an attractive play in the Hammerfest Basin of the Barents Sea. Late Jurassic organic-rich Hekkingen shale directly underlies the Knurr Sandstone and acts as a source to provide effective charge. Three wells, 7120/2-2, 7122/2-1 and 7120/1-2, have proven the Knurr-Kolje play in structural traps, with an oil discovery in 7120/1-2. Prospectivity related to stratigraphic traps is, however, highly under-explored. In order to document and map the reservoir distribution and stratigraphic-trap fairway, the Lower Cretaceous sedimentary package containing the Knurr Sandstone is divided into a number of depositional sequences and systems tracts using key regional seismic profiles calibrated with logs. Mapping of the key surfaces bounding the Knurr sandstone has been carried out using all the seismic vintages available from Norwegian Petroleum Directorate (NPD).The thick massive nature of the sandstone (123 m in well 7122/2-1), sedimentary features characteristic of gravity flow deposits, high-resolution internal seismic reflections and stratal geometries (truncations and lapout patterns), and sequence stratigraphic position of the Knurr Sandstone on seismic profiles confirm that the lobes identified on the seismic section are gravity driven base of the slope lobes. These Knurr lobes and slope aprons were formed as a result of uplift of the Loppa paleo-high in the Late Jurassic to Early Cretaceous times which caused subaerial exposure and incision. The characteristic mounded, lobate geometry evident on the seismic can be mapped along the toe-of-slope and records multiple stacked lobes fed by multiple feeder canyons. Lateral partitioning and separation of the lobes along the toe-of-slope could potentially create stratigraphic traps. The existing 2D seismic coverage is, however, not sufficient to capture lateral stratigraphic heterogeneity to identify stratigraphic traps. 3D seismic coverage with optimum acquisition parameters (high spatial and vertical resolution, appropriate seismic frequency and fold, long offsets and original amplitudes preserved) can allow for the reconstruction of 3D geomorphologic elements to de-risk potential stratigraphic traps prior to exploratory drilling.
KW - Barents sea
KW - Hammerfest basin
KW - Knurr sandstone
KW - Seismic stratigraphy
KW - Turbidite lobes
UR - http://www.scopus.com/inward/record.url?scp=85018792161&partnerID=8YFLogxK
U2 - 10.1016/j.marpetgeo.2017.04.008
DO - 10.1016/j.marpetgeo.2017.04.008
M3 - Review article
AN - SCOPUS:85018792161
SN - 0264-8172
VL - 85
SP - 54
EP - 69
JO - Marine and Petroleum Geology
JF - Marine and Petroleum Geology
ER -