Scaling-up perovskite solar cells on hydrophobic surfaces

Furkan H. Isikgor, Anand S. Subbiah, Mathan K. Eswaran, Calvyn T. Howells, Aslihan Babayigit, Michele De Bastiani, Emre Yengel, Jiang Liu, Francesco Furlan, George T. Harrison, Shynggys Zhumagali, Jafar I. Khan, Frédéric Laquai, Thomas D. Anthopoulos, Iain McCulloch, Udo Schwingenschlögl, Stefaan De Wolf

    Research output: Contribution to journalArticlepeer-review

    49 Scopus citations


    Despite impressive power conversion efficiencies (PCEs) reported for lab-scale perovskite solar cells (PSCs), obtaining large-area devices with similar performance remains challenging. Fundamentally, this can largely be attributed to a polarity mismatch between the perovskite-precursor solution and the underlying hydrophobic contact materials, resulting in perovskite films of insufficient quality for scaled devices. Specifically, for p-i-n devices, the commonly used DMF/DMSO co-solvent has a significant polarity mismatch with its underlying hole-transporting layer, PTAA. Here, the role of MAPbI3•solvent adduct interaction with the PTAA surface towards the formation of micro- and nano-scale pinholes is elucidated in detail. Replacing DMSO with NMP in the co-solvent system changes the binding energy profoundly, enabling uniform and dense films over large areas. The PCE of DMF/NMP ink-based devices drops slightly with increasing active device area, from 21.5% (0.1 cm2) to 19.8% (6.8 cm2), in comparison with conventional DMF/DMSO ink. This work opens a pathway towards the scalability of solution-processed perovskite optoelectronic devices.

    Original languageBritish English
    Article number105633
    JournalNano Energy
    StatePublished - Mar 2021


    • Binding energy
    • Hydrophobic PTAA substrate
    • Large area
    • Perovskite solar cell
    • Pinholes
    • Scalable


    Dive into the research topics of 'Scaling-up perovskite solar cells on hydrophobic surfaces'. Together they form a unique fingerprint.

    Cite this