Room temperature soldering of microelectronic components for enhanced thermal performance

J. S. Subramanian, P. Rodgers, J. Newson, T. Rude, Z. He, E. Besnoin, T. P. Weihs, V. Eveloy, M. Pecht

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

20 Scopus citations

Abstract

A novel fluxless soldering process is presented, that enables lead-free soldering of semiconductor die-to-heat spreader (and heat spreader-to-heat sink structures) at room temperature. The process is based on the use of reactive multilayer foils to locally melt the solder interface. Silicon-copper samples joined with indium solder are thermally characterized for a range of die sizes and bond line thicknesses. The thermal resistance of the solder joints is found to be an order of magnitude lower than for conventional thermal interface materials (TIMs), with good thermal fatigue resistance. The predicted thermo-mechanical behavior of the solder interface in a central processing unit (CPU) application indicates that such joints would survive application environments without causing die cracking. The soldering technology employed could greatly enhance the thermal performance of power IC packages such as CPUs, by enabling the adoption of a solder-based TIM between the die and integrated heat spreader.

Original languageBritish English
Title of host publicationProceedings of the 6th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems - EuroSimE 2005
Pages681-686
Number of pages6
DOIs
StatePublished - 2005
Event6th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems - EuroSimE 2005 - Berlin, Germany
Duration: 18 Apr 200520 Apr 2005

Publication series

NameProceedings of the 6th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems - EuroSimE 2005
Volume2005

Conference

Conference6th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems - EuroSimE 2005
Country/TerritoryGermany
CityBerlin
Period18/04/0520/04/05

Fingerprint

Dive into the research topics of 'Room temperature soldering of microelectronic components for enhanced thermal performance'. Together they form a unique fingerprint.

Cite this