Robust CDMA multiuser detection using a neural-network approach

Teong Chee Chuah, Bayan S. Sharif, Oliver R. Hinton

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Recently, a robust version of the linear decorrelating detector (LDD) based on the Huber's M-estimation technique has been proposed. In this paper, we first demonstrate the use of a three-layer recurrent neural network (RNN) to implement the LDD without requiring matrix inversion. The key idea is based on minimizing an appropriate computational energy function iteratively. Second, it will be shown that the M-decorrelating detector (MDD) can be implemented by simply incorporating sigmoidal neurons in the first layer of the RNN. A proof of the redundancy of the matrix inversion process is provided and the computational saving in realistic network is highlighted. Third, we illustrate how further performance gain could be achieved for the subspace-based blind MDD by using robust estimates of the signal subspace components in the initial stage. The impulsive noise is modeled using non-Gaussian α-stable distributions, which do not include a Gaussian component but facilitate the use of the recently proposed geometric signal-to-noise ratio (G-SNR). The characteristics and performance of the proposed neural-network detectors are investigated by computer simulation.

Original languageBritish English
Pages (from-to)1532-1539
Number of pages8
JournalIEEE Transactions on Neural Networks
Volume13
Issue number6
DOIs
StatePublished - Nov 2002

Keywords

  • α-stable distributions
  • Decorrelating detector
  • M-estimation
  • Non-Gaussian noise
  • Recurrent neural network (RNN)

Fingerprint

Dive into the research topics of 'Robust CDMA multiuser detection using a neural-network approach'. Together they form a unique fingerprint.

Cite this