Ring specimen geometry for determining the ductility of tubulars

M. A. Al Khaled, I. Barsoum

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Pressure vessels designed in accordance with the ASME BPVC code are protected against local ductile failure. Recent work has shown that local ductile failure highly depends on the stress state characterized by both stress triaxiality and the Lode parameter. In this paper, the effect of stress state on the ductility of a tubular steel is studied. Two ring specimen configurations were optimized to allow the determination of the ductile failure locus of both tensile and plane strain loadings. The geometry of both ring specimen configurations was optimized to achieve a plane strain (L = 0) condition and a generalized tension (L = -1) condition. Notches with different radii were machined on both types to achieve a wide range of stress triaxiality. Specimens were manufactured from SA-106 carbon tubular steel and were tested to determine the ductile failure loci as a function of T and L. Failure locus of SA-106 steel was constructed based on the failure instants and was found to be independent of the variation in the Lode parameter. The ASME-BPVC local failure criterion showed close agreement with experimental results.

Original languageBritish English
Title of host publicationMechanics of Solids, Structures and Fluids; NDE, Diagnosis, and Prognosis
ISBN (Electronic)9780791850633
DOIs
StatePublished - 2016
EventASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016 - Phoenix, United States
Duration: 11 Nov 201617 Nov 2016

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume9

Conference

ConferenceASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016
Country/TerritoryUnited States
CityPhoenix
Period11/11/1617/11/16

Fingerprint

Dive into the research topics of 'Ring specimen geometry for determining the ductility of tubulars'. Together they form a unique fingerprint.

Cite this