Abstract
Clathrin-mediated endocytosis is a major mode of nanoparticle (NP) internalization into cells. However, influence of internalization routes on nanoparticle toxicity is poorly understood. Here, we assess the impact of blocking clathrin-mediated endocytosis upon silver NP (AgNP) toxicity to gills and digestive glands of the mussel Mytilusgalloprovincialisusing the uptake inhibitor, amantadine. Animals were exposed for 12h to AgNP (< 50 nm) in the presence and absence of amantadine. Labeling of oxidative protein modifications, either thiol oxidation, carbonyl formation or both in two-dimensional electrophoresis separations revealed 16 differentially affected abundance spots. Amongst these, twelve hypothetical proteins were successfully identified by peptide mass fingerprinting (MALDI TOF-MS/MS). The proteins identified are involved in buffering redox status or in cytoprotection. We conclude that blockade of clathrin-mediated endocytosis protected against NP toxicity, suggesting this uptake pathway facilitates toxicity. Lysosomal degradation and autophagy are major mechanisms that might be induced to mitigate NP toxicity.
Original language | British English |
---|---|
Article number | e0205765 |
Journal | PLoS ONE |
Volume | 13 |
Issue number | 10 |
DOIs | |
State | Published - Oct 2018 |