TY - GEN
T1 - Reconfigurable Intelligent Computational Surfaces for MEC-Assisted Autonomous Driving Networks
AU - Yang, Bo
AU - Zhang, Xueyao
AU - Yu, Zhiwen
AU - Cao, Xuelin
AU - Huang, Chongwen
AU - Alexandropoulos, George C.
AU - Zhang, Yan
AU - Debbah, Mérouane
AU - Yuen, Chau
N1 - Publisher Copyright:
© 2024 IEEE.
PY - 2024
Y1 - 2024
N2 - In this paper, we focus on improving autonomous driving safety via task offloading from cellular vehicles (CVs), using vehicle-to-infrastructure (V2I) links, to an multi-access edge computing (MEC) server. Considering that the frequencies used for V2I links can be reused for vehicle-to-vehicle (V2V) communications to improve spectrum utilization, the receiver of each V2I link may suffer from severe interference, causing outages in the task offloading process. To tackle this issue, we propose the deployment of a reconfigurable intelligent computational surface (RICS) to enable, not only V2I reflective links, but also interference cancellation at the V2V links exploiting the computational capability of its metamaterials. We devise a joint optimization formulation for the task offloading ratio between the CVs and the MEC server, the spectrum sharing strategy between V2V and V2I communications, as well as the RICS reflection and refraction matrices, with the objective to maximize a safety-based autonomous driving task. Due to the non-convexity of the problem and the coupling among its free variables, we transform it into a more tractable equivalent form, which is then decomposed into three sub-problems and solved via an alternate approximation method. Our simulation results demonstrate the effectiveness of the proposed RICS optimization in improving the safety in autonomous driving networks.
AB - In this paper, we focus on improving autonomous driving safety via task offloading from cellular vehicles (CVs), using vehicle-to-infrastructure (V2I) links, to an multi-access edge computing (MEC) server. Considering that the frequencies used for V2I links can be reused for vehicle-to-vehicle (V2V) communications to improve spectrum utilization, the receiver of each V2I link may suffer from severe interference, causing outages in the task offloading process. To tackle this issue, we propose the deployment of a reconfigurable intelligent computational surface (RICS) to enable, not only V2I reflective links, but also interference cancellation at the V2V links exploiting the computational capability of its metamaterials. We devise a joint optimization formulation for the task offloading ratio between the CVs and the MEC server, the spectrum sharing strategy between V2V and V2I communications, as well as the RICS reflection and refraction matrices, with the objective to maximize a safety-based autonomous driving task. Due to the non-convexity of the problem and the coupling among its free variables, we transform it into a more tractable equivalent form, which is then decomposed into three sub-problems and solved via an alternate approximation method. Our simulation results demonstrate the effectiveness of the proposed RICS optimization in improving the safety in autonomous driving networks.
KW - autonomous driving
KW - multi-access edge computing
KW - RICS
KW - spectrum sharing
KW - task offloading
UR - http://www.scopus.com/inward/record.url?scp=85198839299&partnerID=8YFLogxK
U2 - 10.1109/WCNC57260.2024.10570740
DO - 10.1109/WCNC57260.2024.10570740
M3 - Conference contribution
AN - SCOPUS:85198839299
T3 - IEEE Wireless Communications and Networking Conference, WCNC
BT - 2024 IEEE Wireless Communications and Networking Conference, WCNC 2024 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 25th IEEE Wireless Communications and Networking Conference, WCNC 2024
Y2 - 21 April 2024 through 24 April 2024
ER -