Prospectus of advanced nanomaterials for antiviral properties

Tabinda Showkat Patoo, Firdous Khanday, Ahsanulhaq Qurashi

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Viral hazards have suddenly increased in the form of the century's biggest pandemic through COVID-19. However, viruses are also associated with other human diseases, the severity of which range from the mild common cold to deleterious cancers and HIV. Conventional anti-viral therapies that have been developed to mitigate deleterious viral effects have not stood the test of time owing to their numerous limitations. This has burdened the research community worldwide with the challenging task of discovering advanced anti-viral strategies to overcome the limitations being faced. In this regard, fortunately, metal and inorganic nanoparticles offer respite as they exhibit tremendous anti-viral potential and are considered a powerful weapon against viral intrusions. Metal nanoparticles of various metals such as silver, gold, and copper have not only successfully attenuated the infectivity of malignant viruses (HIV, HSV, HINI, etc.) in in vitro conditions and in vivo conditions (mainly silver and zinc oxide nanoparticles) but have also successfully overcome the limitations faced by conventional anti-viral therapies. Acting in a resistance insensitive, age and co-morbidity independent and low cytotoxic manner, metal nanoparticles can successfully inhibit viral entry and other viral development processes. In the light of the mechanisms and advantages offered by metal nanoparticles, it is suggested to consider their usage in actual clinical practice rather than as an alternate therapy. Further, considering the mechanisms exhibited by metal nanoparticles to deprive the viral load, we anticipate that the current pandemic (COVID-19) can be treated to some extent via the aid of metal nanoparticles. The successful implication of the hypothesized mechanisms can offer abating strategies to combat the current pandemic and open new avenues to cope with future pandemics. In this prospective, we provide the frontiers and current scenario of various classes of nanoparticles being explored for antiviral activities.

Original languageBritish English
Pages (from-to)2960-2970
Number of pages11
JournalMaterials Advances
Volume3
Issue number7
DOIs
StatePublished - 24 Jan 2022

Fingerprint

Dive into the research topics of 'Prospectus of advanced nanomaterials for antiviral properties'. Together they form a unique fingerprint.

Cite this