TY - JOUR
T1 - Pretreatment and sugar recovery of oil palm fronds using choline chloride:calcium chloride hexahydrate integrated with metal chloride
AU - New, Eng Kein
AU - Wu, Ta Yeong
AU - Tnah, Shen Khang
AU - Procentese, Alessandra
AU - Cheng, Chin Kui
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2023/8/15
Y1 - 2023/8/15
N2 - In this study, metal chlorides with different valences, namely potassium chloride (KCl), copper (ii) chloride (CuCl2) and iron (iii) chloride (FeCl3), were used as co-catalysts in a Type II deep eutectic solvent (DES) system, namely, choline chloride:calcium chloride hexahydrate (ChCl:CaCl2·6H2O). After determining their corresponding recommended pretreatment conditions, specific volumetric water content was integrated into the DES + co-catalyst system to aggrandize the pretreatment for oil palm fronds (OPF). At one atmospheric condition, pretreatment of OPF using ChCl:CaCl2·6H2O/1 wt% CuCl2/30 vol% water (115 °C, 1.5 h) and ChCl:CaCl2·6H2O/1 wt% FeCl3/20 vol% water (125 °C, 1.5 h) could produce xylose recovery up to 15.78 g/L (76.42%) and 15.02 g/L (72.74%), respectively. Additionally, both transition metal salt co-catalysts expedited the solvent systems with high lignin (≥50%), xylan (≥85%) and arabinan (∼100%) removal from the OPF. Therefore, applying the studied Type II DES containing co-catalyst while integrated with additional water content had enabled an effective OPF pretreatment for dissolving the ligno-hemicellulose components and expanded a bright horizon for biorefinery processes. A utilization of DES + co-catalyst system could lead to the reduction of energy intensity as compared to the conventional DES system.
AB - In this study, metal chlorides with different valences, namely potassium chloride (KCl), copper (ii) chloride (CuCl2) and iron (iii) chloride (FeCl3), were used as co-catalysts in a Type II deep eutectic solvent (DES) system, namely, choline chloride:calcium chloride hexahydrate (ChCl:CaCl2·6H2O). After determining their corresponding recommended pretreatment conditions, specific volumetric water content was integrated into the DES + co-catalyst system to aggrandize the pretreatment for oil palm fronds (OPF). At one atmospheric condition, pretreatment of OPF using ChCl:CaCl2·6H2O/1 wt% CuCl2/30 vol% water (115 °C, 1.5 h) and ChCl:CaCl2·6H2O/1 wt% FeCl3/20 vol% water (125 °C, 1.5 h) could produce xylose recovery up to 15.78 g/L (76.42%) and 15.02 g/L (72.74%), respectively. Additionally, both transition metal salt co-catalysts expedited the solvent systems with high lignin (≥50%), xylan (≥85%) and arabinan (∼100%) removal from the OPF. Therefore, applying the studied Type II DES containing co-catalyst while integrated with additional water content had enabled an effective OPF pretreatment for dissolving the ligno-hemicellulose components and expanded a bright horizon for biorefinery processes. A utilization of DES + co-catalyst system could lead to the reduction of energy intensity as compared to the conventional DES system.
KW - Biomass valorization
KW - Biorefinery
KW - Deep eutectic solvent
KW - Delignification
KW - Green solvent
KW - Lignocellulosic biomass
KW - Waste management
KW - Wood technology
UR - http://www.scopus.com/inward/record.url?scp=85154619223&partnerID=8YFLogxK
U2 - 10.1016/j.energy.2023.127486
DO - 10.1016/j.energy.2023.127486
M3 - Article
AN - SCOPUS:85154619223
SN - 0360-5442
VL - 277
JO - Energy
JF - Energy
M1 - 127486
ER -