Preparation and capacitance properties of graphene/NiAl layered double-hydroxide nanocomposite

Zhuo Wang, Xin Zhang, Junhui Wang, Linda Zou, Zhaotie Liu, Zhengping Hao

Research output: Contribution to journalArticlepeer-review

74 Scopus citations


Graphene/NiAl layered double-hydroxide (LDH) composite with high capacitive properties has been prepared in a friendly one-step process. It is found that NiAl-LDH is formed in the addition of precipitator agent (NaOH and NaNO3) by hydrothermal method, at the same time graphene oxide (GO) is reduced to graphene. The morphology and structure of the obtained material are examined by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), transmission electron microscope (TEM), and scanning electron microscope (SEM) techniques. It is revealed that the NiAl-LDH disperses well on the surface of graphene and the formation of NiAl-LDH nanoparticles is beneficial to the peeling of graphene (RGO). More importantly, the addition of NiAl-LDH to graphene endows the materials with desirable specific surface areas and higher porosity. These structural advantages result in higher specific capacitance compared with pristine graphene. Electrochemical property investigations show that the graphene/NiAl-LDH had a higher specific capacitance than graphene.

Original languageBritish English
Pages (from-to)251-257
Number of pages7
JournalJournal of Colloid and Interface Science
StatePublished - 2013


  • Electrochemical property
  • Graphene
  • Layered double hydroxide
  • Nanocomposite electrode
  • Supercapacitance


Dive into the research topics of 'Preparation and capacitance properties of graphene/NiAl layered double-hydroxide nanocomposite'. Together they form a unique fingerprint.

Cite this