Porous Ti3C2TxMXene Membranes for Highly Efficient Salinity Gradient Energy Harvesting

Seunghyun Hong, Jehad K. El-Demellawi, Yongjiu Lei, Zhixiong Liu, Faisal Al Marzooqi, Hassan A. Arafat, Husam N. Alshareef

Research output: Contribution to journalArticlepeer-review

67 Scopus citations


Extracting osmotic energy through nanoporous membranes is an efficient way to harvest renewable and sustainable energy using the salinity gradient between seawater and river water. Despite recent advances of nanopore-based membranes, which have revitalized the prospect of blue energy, their energy conversion is hampered by nanomembrane issues such as high internal resistance or low selectivity. Herein, we report a lamellar-structured membrane made of nanoporous Ti3C2Tx MXene sheets, exhibiting simultaneous enhancement in permeability and ion selectivity beyond their inherent trade-off. The perforated nanopores formed by facile H2SO4 oxidation of the sheets act as a network of cation channels that interconnects interplanar nanocapillaries throughout the lamellar membrane. The constructed internal nanopores lower the energy barrier for cation passage, thereby boosting the preferential ion diffusion across the membrane. A maximum output power density of the nanoporous Ti3C2Tx MXene membranes reaches up to 17.5 W·m-2 under a 100-fold KCl gradient at neutral pH and room temperature, which is as high as by 38% compared to that of the pristine membrane. The membrane design strategy employing the nanoporous two-dimensional sheets provides a promising approach for ion exchange, osmotic energy extraction, and other nanofluidic applications.

Original languageBritish English
Pages (from-to)792-800
Number of pages9
JournalACS Nano
Issue number1
StatePublished - 25 Jan 2022


  • chemical nanopore etching
  • lamellar structured membranes
  • nanoconfined fluidic channels
  • salinity gradient power generation
  • titanium carbide


Dive into the research topics of 'Porous Ti3C2TxMXene Membranes for Highly Efficient Salinity Gradient Energy Harvesting'. Together they form a unique fingerprint.

Cite this