TY - JOUR
T1 - Plasma modification and synthesis of membrane materials—a mechanistic review
AU - Wang, Jingshi
AU - Chen, Xiao
AU - Reis, Rackel
AU - Chen, Zhiqiang
AU - Milne, Nick
AU - Winther-Jensen, Bjorn
AU - Kong, Lingxue
AU - Dumée, Ludovic F.
N1 - Funding Information:
Acknowledgments: J.W. would like to thank Deakin University and AINSE Ltd. for providing financial support (DUPRS and PGRA Award). L.F.D. acknowledges ARC for his Discovery Early Career Researcher Award (DECRA).
Publisher Copyright:
© 2018 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2018/9
Y1 - 2018/9
N2 - Although commercial membranes are well established materials for water desalination and wastewater treatment, modification on commercial membranes is still necessary to deliver high-performance with enhanced flux and/or selectivity and fouling resistance. A modification method with plasma techniques has been extensively applied for high-performance membrane production. The paper presents a mechanistic review on the impact of plasma gas and polymerization, at either low pressure or atmospheric pressure on the material properties and performance of the modified membranes. At first, plasma conditions at low-pressure such as plasma power, gas or monomer flow rate, reactor pressure, and treatment duration which affect the chemical structure, surface hydrophilicity, morphology, as well as performance of the membranes have been discussed. The underlying mechanisms of plasma gas and polymerization have been highlighted. Thereafter, the recent research in plasma techniques toward membrane modification at atmospheric environment has been critically evaluated. The research focuses of future plasma-related membrane modification, and fabrication studies have been predicted to closely relate with the implementation of the atmospheric-pressure processes at the large-scale.
AB - Although commercial membranes are well established materials for water desalination and wastewater treatment, modification on commercial membranes is still necessary to deliver high-performance with enhanced flux and/or selectivity and fouling resistance. A modification method with plasma techniques has been extensively applied for high-performance membrane production. The paper presents a mechanistic review on the impact of plasma gas and polymerization, at either low pressure or atmospheric pressure on the material properties and performance of the modified membranes. At first, plasma conditions at low-pressure such as plasma power, gas or monomer flow rate, reactor pressure, and treatment duration which affect the chemical structure, surface hydrophilicity, morphology, as well as performance of the membranes have been discussed. The underlying mechanisms of plasma gas and polymerization have been highlighted. Thereafter, the recent research in plasma techniques toward membrane modification at atmospheric environment has been critically evaluated. The research focuses of future plasma-related membrane modification, and fabrication studies have been predicted to closely relate with the implementation of the atmospheric-pressure processes at the large-scale.
KW - Free volume
KW - Membrane surface modification
KW - Plasma mechanics
KW - Plasma polymerization
KW - Plasma texturation
KW - Wettability
UR - http://www.scopus.com/inward/record.url?scp=85051632080&partnerID=8YFLogxK
U2 - 10.3390/membranes8030056
DO - 10.3390/membranes8030056
M3 - Review article
AN - SCOPUS:85051632080
SN - 2077-0375
VL - 8
JO - Membranes
JF - Membranes
IS - 3
M1 - 56
ER -