Piecewise nonlinear energy sink

Research output: Contribution to conferencePaperpeer-review

4 Scopus citations

Abstract

Symmetric piecewise nonlinearities are employed here to design highly efficient nonlinear energy sink (NES). These symmetric piecewise nonlinearities are usually called in the literature as dead-zone nonlinearities. The proposed dead-zone NES includes symmetric clearance about its equilibrium position in which zero stiffness and linear viscous damping are incorporated. At the boundaries of the symmetric clearance, the NES is coupled to the linear structure by either linear or nonlinear stiffness components in addition to similar viscous damping to that in the clearance zone. By this flexible design of the dead-zone NES, we obtain a considerable enhancement in the NES efficiency at moderate and severe energy inputs. Moreover, the dead-zone NES is also found here through numerical simulations to be more robust for damping and stiffness variations than the linear absorber and some other types of NESs.

Original languageBritish English
DOIs
StatePublished - 2015
EventASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2015 - Boston, United States
Duration: 2 Aug 20155 Aug 2015

Conference

ConferenceASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2015
Country/TerritoryUnited States
CityBoston
Period2/08/155/08/15

Fingerprint

Dive into the research topics of 'Piecewise nonlinear energy sink'. Together they form a unique fingerprint.

Cite this