@inproceedings{b7f51ba3cd384b5baa1df5a3b4e9847d,
title = "Physical layer security for 5G non-orthogonal multiple access in large-scale networks",
abstract = "In this paper, the physical layer security of applying non-orthogonal multiple access (NOMA) in large-scale networks is investigated. In the considered scenario, both the NOMA users and eavesdroppers are spatially randomly deployed. A protected zone around the source node is adopted to enhance the security of a random network. In order to characterize the secrecy performance of the considered scenario, new exact and asymptotic expressions for the security outage probability are derived. These analytical results demonstrate that the secrecy diversity order is m, which is determined by the user with poor channel condition. Monte Carlo simulations are provided to verify the derived analytical results. Furthermore, it is also confirmed that the secure performance of the NOMA networks can be improved by either enlarging the scope of the protected zone or reducing the scope of the user zone.",
author = "Zhijin Qin and Yuanwei Liu and Zhiguo Ding and Yue Gao and Maged Elkashlan",
note = "Publisher Copyright: {\textcopyright} 2016 IEEE.; 2016 IEEE International Conference on Communications, ICC 2016 ; Conference date: 22-05-2016 Through 27-05-2016",
year = "2016",
month = jul,
day = "12",
doi = "10.1109/ICC.2016.7510755",
language = "British English",
series = "2016 IEEE International Conference on Communications, ICC 2016",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
booktitle = "2016 IEEE International Conference on Communications, ICC 2016",
address = "United States",
}