Permanent lattice compression of lead-halide perovskite for persistently enhanced optoelectronic properties

Karunakara Moorthy Boopathi, Beatriz Martín-García, Aniruddha Ray, Joao M. Pina, Sergio Marras, Makhsud I. Saidaminov, Francesco Bonaccorso, Francesco Di Stasio, Edward H. Sargent, Liberato Manna, Ahmed L. Abdelhady

Research output: Contribution to journalArticlepeer-review

52 Scopus citations

Abstract

Under mild mechanical pressure, halide perovskites show enhanced optoelectronic properties. However, these improvements are reversible upon decompression, and permanent enhancements have yet to be realized. Here, we report antisolvent-assisted solvent acidolysis crystallization that enables us to prepare methylammonium lead bromide single crystals showing intense emission at all four edges under ultraviolet light excitation. We study structural variations (edge-vs-center) in these crystals using micro-X-ray diffraction and find that the enhanced emission at the edges correlates with lattice compression compared to in the central areas. Time-resolved photoluminescence measurements show much longer-lived photogenerated carriers at the compressed edges, with radiative component lifetimes of ∼1.4 μs, 10 times longer than at the central regions. The properties of the edges are exploited to fabricate planar photodetectors exhibiting detectivities of 3 × 1013 Jones, compared to 5 × 1012 Jones at the central regions. The enhanced lifetimes and detectivities correlate to the reduced trap state densities and the formation of shallower traps at the edges due to lattice compression.

Original languageBritish English
Pages (from-to)642-649
Number of pages8
JournalACS Energy Letters
Volume5
Issue number2
DOIs
StatePublished - 2021

Fingerprint

Dive into the research topics of 'Permanent lattice compression of lead-halide perovskite for persistently enhanced optoelectronic properties'. Together they form a unique fingerprint.

Cite this